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abstract

Processes by which compact objects such as black holes gravitationally capture
ambient matter either from winds of a collection of stars or from a single com-
panion star is called accretion. Though most of the matter could fall onto com-
pact objects, a fraction of it is generally ejected as an outflow which is eventually
collimated and accelerated to produce radio jets observed in quasars and micro-
quasars. According to the transonic flow models of Chakrabarti and his collabo-
rators (Chakrabarti 1989, 1990, 1999, 1996; Molteni, Lanzafame, Chakrabarti 1994;
Giri, Chakrabarti 2010, 2012, 2014 and references therein) thermodynamically ra-
diation pressure or ion pressure supported and hydrodynamically centrifugal
pressure supported boundary layer (i.e the post-shock region) of a black hole
is the source of this outflowing matter. Observations in the two spectral regions
of the electromagnetic spectrum, in the domain of the hard X-rays on one hand
(Sunyaev et al 1991; Paul et al 1991), and in the domain of radio wavelengths on
the other hand, revealed the existence of relativistic jets in microquasars (Mirabel
et al 1992; Mirabel & Rodriguez 1998). Relativistic jets with sudden enhancement
of outflow rate can be produced when the inner part of the disk is destroyed
and the matter is squeezed (Chakrabarti & D’Silva, 1994; Nandi et al. 2001) by
magnetic stress. Clearly, magnetic field is seen to play a major role in origin, ac-
celeration and collimation of these relativistic jets. We extend the earlier work
of Chakrabarti & D’Silva (1994) and D’Silva & Chakrabarti (1994) to study the
effects of predominantly toroidal magnetic flux tubes on the dynamics of matter
which is falling towards the black hole or are ejected as the outflow. The pro-
cesses involved are hydrodynamic and hydromagnetic in nature. Understanding
of the launching of jets translates to precise understanding of magnetic activity
at the base of the jets. Prior to this, fields must be brought to this region through
advection from the surrounding stars. These flux tubes are compressed by the
disk,amplified by the shear, convection, and advection and finally eliminated by
the buoyancy effect.
In this thesis, we survey the dynamics of the toroidal flux tubes by solving equa-
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tions of motion of flux tubes using density, velocity, and temperature profiles
which we obtain from time dependent solutions of axially symmetric dimen-
sional accretion flows around a black hole. The simulations were carried out
using finite difference method and Total Variation Diminishing (TVD) scheme
for the Schwarzschild black holes. Our aim is to check whether the flux tubes
contribute to increase in the outflow rates, and the outflow velocities by squeez-
ing the jet matter and improve the collimation of outflows due to the presence of
the hoop stress of toroidal field component. It is seen that depending on the cross
sectional radius of the flux tubes which control drag forces, these field lines may
be advected towards the central object or oscillate vertically and radially before
eventually escaping out of the thick disk through the funnel wall (pressure zero
surface) along with the jets. At the same time, we also wish to investigate the
flow and spectral properties of a truly two dimensional flow when no reflection
symmetry on the equatorial plane is assumed. We study the effects of viscosity
and cooling on this type of flow and study its stability properties. We also focus
on how the flux tubes behave if they are injected in a viscous flow.
In chapter 1 we give a general introduction about the properties of black hole
and accretion flow models. We also discuss about the ubiquitous nature of jets
and outflows which can be seen in huge ensemble of astrophysical objects. We
present a brief review about the magnetized disc and how it is connected to the
creation of highly collimated jets.
In chapter 2 we discuss about the governing hydrodynamic equations and also
the numerical schemes involved in solving them. We presented a brief discussion
on how the hydrodynamic equation is written in terms of conservative and prim-
itive variables and how the eigenvalues and eigenvectors of the Jacobian matrices
are constructed. We add the magnetic force term to the source term to incorpo-
rate the effects of the magnetic fields and study the dynamics of it. Following the
prescription in Giri, Chakrabarti (2013) and Giri, Garain, Chakrabarti (2015) we
add radiative cooling and viscosity to produce the Keplerian disc with magnetic
fields.
In chapter 3 we discuss about the simulation set up and initial conditions neces-
sary to undergo the simulation of inviscid and viscous non magnetized as well
as magnetized flow. Here we couple the time dependant hydrodynamic code
with the code to compute the trajectories of the flux tube by using the velocity,
temperature, and pressure profile calculated by the hydrodynamic code at every
time instant. We also remove the reflection symmetry along the equatorial plane
and test the code using spherical Bondi flow for both magnetized and non mag-
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netized cases.
In chapter 4 we discuss the results of a bi-quadrant inviscid flow simulation
where reflection symmetry is not invoked. Doing so we have allowed the flow
to undergo horizontal as well as vertical oscillations. It is found that as we go
towards higher angular momentum, the flow becomes very turbulent and it is
observed from the simulation that at some times, a part of the CENBOL is shifted
towards the upper quadrant of the flow and for other times the CENBOL is
shifted towards the lower quadrant. This shifting of CENBOL has an effect on
the outflow also. When the CENBOL shifts towards the upper quadrant, the total
outflow from the upper quadrant becomes significantly higher than that from the
lower quadrant and vice versa. As a result, the outflows from upper and lower
quadrants show anti-correlation. In chapter 5 we have discussed the simulation
of viscous flows and it can be seen that in the presence of radiative cooling, de-
pending on the optical depth, the Keplerian disc is formed a nd the temperature
inside the disc has the distribution of ∼ r−0.79 which almost matches with the
analytical distribution of ∼ r−3/4.
In chapter 6, we studied the dynamics of magnetic flux tubes which are released
at the outer edge of a time dependant two quadrant thick advective disc and their
role in collimation and acceleration of the jet and outflow from the upper bound-
ary. We also examine whether these magnetic flux tubes aid in the acceleration
and collimation of the jets or not.
In chapter 7, we draw the conclusions and discuss our future plan.
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Dynamics Of Magnetic Flux Tubes In Advective Flows Around Galactic 

And Extragalactic Black Holes 

 

Abstract 

 

Though most of the matter gets accreted to the compact object, a fraction of it is 

ejected as an outflow which is eventually collimated accelerated to produce radio jets 

observed in quasars and micro-quasars. Relativistic jets with significant matter 

content are produced when the inner part of the disc is destroyed and evacuated 

(Chakrabarti & D’Silva, 1994; Nandi et al. 2001). Clearly, Magnetic field has to play 

a major role in origin, acceleration and collimation of these relativistic jets. One of 

our goals would be to study the effects of magnetic fields on the origin, acceleration 

and collimation of jets. The processes involved are hydrodynamic and hydro magnetic 

in nature. In this thesis, we survey the dynamics of the toroidal flux tubes by solving 

equations of motion of flux tube using density, velocity, and temperature profiles 

which we obtain from time dependent solutions of two dimensional (axially 

symmetric) accretion flows around black hole. The simulations were carried out using 

finite difference method and Total Variation Diminishing (TVD) scheme for the black 

holes having Schwarzschild geometry. Our goal is to study dynamics of the flux tubes 

and to check whether the flux tubes contribute to increase in the outflow rates, to 

increase in the outflow velocities by squeezing the jet matter or to improve the 

collimation of outflows due to the presence of the hoop stress due to toroidal fields. It 

is seen that depending on the cross sectional radius of the flux tubes (which control 

drag forces), these field lines may move towards the central object or oscillate 

vertically before eventually escaping out of the funnel wall (pressure zero surface) 

along with the jets. At the same time, we also wish to investigate flow properties of a 

truly two dimensional flow when no reflection symmetry on the equatorial plane is 

assumed. We study the effects of viscosity and cooling on this type of flow and study 

its stability properties. We focused on how the flux tube will behave if they are to be 

injected in a viscous flow. 
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Introduction

Black holes are the most compact objects among all the celestial bodies. The for-
mation of a black hole is due to catastrophic gravitational collapse of matter. De-
pending on the mass of the progenitor matter, black holes can be classified into
three broad classes, namely, stellar mass black holes, intermediate mass black
holes and supermassive black holes. Generally, the stellar mass black holes have
mass ∼ 10M� (where M� = 1.99× 1033 g is the mass of the Sun). Many can-
didates of this variant have been discovered within our very own galaxy (e.g.,
Cygnus X-1, GRS 1915+105, GRO J1655-40, GX 339-4 to name a few). On the
other hand, the super-massive black holes have a mass in the range ≥ 106−10M�
and are mostly found at centers of galaxies (e.g., Sagittarius A* in our galaxy, M87
etc.). Recently, it has been reported that another class of black holes having mass
in the intermediate range (∼ 102 − 104M�) may have been observed (Colbert &
Mushotzky 1999; Dewangan, Titarchuk & Griffiths 2006; Patruno, Zwart, Dewi &
Hopman 2006). These are called intermediate mass black holes. The key factor of
a star to collapse to a stellar black hole is its initial mass. Progenitor stars more
massive than ∼ 40− 50M� end up becoming black holes. The collapse happens
when a massive star runs out of nuclear fuel inside it and cannot generate enough
outward thermal pressure to balance the effect of the inward gravitational force.
In case of black hole formation, the star collapses completely creating a singular-
ity as opposed to the formation of a white dwarf or a neutron star when the star
collapses partially as the electron (in case of white dwarf) or neutron degeneracy
pressure (in case of neutron star) halts the gravitational pull preventing the star
to collapse completely.

Of all the celestial objects, black holes are the simplest as the defining feature
of this genre of compact stars is presence of an imaginary boundary known as
the event horizon through which nothing including light can come out. Matter

1
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falls towards this boundary due to enormous gravitational pull of the compact
object and enters into the horizon with a speed of light. This condition is fixed
irrespective of black hole mass and spin. Non-rotating black holes are called
Schwarzschild black holes which are the simplest. There are other types of black
holes, namely, Kerr black holes (rotating black holes) and Reissner-Nordstorm
black holes (black holes having charge but no spin). Accretion is a common phe-
nomenon for many astrophysical systems such as young stellar objects, X-ray
binaries, active galactic nuclei etc. In case of X-ray binaries, if the companion is
a compact star (black hole or white dwarf or neutron star) they can feed on the
companion star of the binary system. Matter from a companion star is accreted to
compact objects either by Roche lobe overflow or as winds. Another common fea-
ture of many astrophysical systems is the presence of jets and/or outflows. The
Jets and outflows for a black hole candidate must originate from the accretion disc
itself. As matter approaches towards a black hole, the centrifugal force dominates
over the gravitational force and this causes matter to slow down and gradually
pile up creating a region which is called Centrifugal pressure supported BOund-
ary Layer or CENBOL. In TCAF (Two Component Advective Flow) paradigm
(Chakrabarti 1996, 1997) jets and outflows are strictly coupled to this CENBOL.
In §1.1, we describe the properties of black holes in a nutshell and in §1.2, we
discuss the basic features and different aspects of accretion processes. We also
discuss physics behind accretion. In §1.3, we describe all the theoretical models
and finally, we discuss jets and outflows and what role does magnetic fields play
in §1.4.

1.1 Black Holes- A Brief Overview

A black hole can simply be defined as a region of spacetime that cannot communi-
cate with the rest of the universe. The boundary of this region is called the event
horizon through which nothing, not even light, can come out. Einstein’s equa-
tions inside this horizon breaks down developing a singularity which is said to
be "causally disconnected" from the exterior world. Most general stationary black
hole solution is known as the Kerr-Newman metric which depends on three inde-
pendent observable quantities namely, (i) Mass (M), (ii) Angular momentum (J),
and (iii) Charge (Q). As early as 1795 Laplace in his book "Le Système du Monde"
conjectured that light cannot escape from an object with sufficiently high mass
and small radius as a consequence of Newtonian gravity and Newton’s corpus-
cular theory of light. It is well known that the escape velocity of a particle from a
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gravitating body of mass M and radius R is,

v ≥
√

2GM
R

(1-1)

Using this, we can compute the no-escape radius for light which is,

R ≤ 2GM
c2 (1-2)

Following Schwarzschild’s work in 1916, the metric of the spacetime around
the simplest black hole (non-rotating, no charge i.e. J = 0 and Q = 0) can be
written as

ds2 = −(1− 2GM/c2

r
)dt2 + (1− 2GM/c2

r
)−1dr2 + r2dθ2 + r2 sin2 θdφ2 (1-3)

From the expression of this metric it is evident that this metric is not valid when
r = 2GM

c2 . It develops a singularity when r → 2GM
c2 which re-establishes 1-2

through accurate theory of general relativity. This quantity r = 2GM
c2 is known

as the Schwarzschild radius (rg) of a black hole with mass M. This is also the
position of event horizon. If 1M� star could form a black hole, the value of rg

would be 3 km.

1.1.1 Gravitational Field: Difference between a Newtonian star
and a Black hole

A test particle around a Newtonian star experiences Newtonian gravitational po-
tential given as,

φN = −GM
r

. (1-4)

and the effective potential of a rotating gas with specific angular momentum λ is

φe f f = φN +
λ2

2r2 (1-5)

The matter to fall onto the Newtonian star of finite size the gravitational force
must overcome the centrifugal barrier and thus it can be easily found that only
those matter with angular momentum less than the Keplerian value λKep,N =√

GMr will accrete. In case of the black hole, the situation is quite different as
this effective potential can not be obtained by simply adding the components as
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Figure 1.1: Comparison between general relativistic and Newtonian effec-
tive potentials. Effective potential with GR approach is drawn for λ =

0, 3, 2
√

3, 3.7, 4, 4.5 and Newtonian effective potential is drawn for λ =

3, 2
√

3, 4.5. The dashed line for which Ve f f = 1 denotes rest mass energy of
particle falling into the black hole.

it was done in case of a Newtonian star. The effective potential can be derived
from the metric given in 1-3. The effective potential is given as,

Ve f f =

{(
1− 2

r

)(
1 +

λ̃2

r2

)} 1
2

(1-6)

where, λ̃ = λ
m and Ẽ = E

m . We can have a general picture of the capture or-

bits of the particle from this effective potential. If
∂2Ve f f

∂r2 > 0 i.e., Ve f f is con-

cave upwards then we will have stable circular orbits and if
∂2Ve f f

∂r2 < 0 then we
will have unstable circular orbits. Circular orbits (bound) occur when we have
∂Ve f f

∂r = 0 and dr
dτ = 0. Using the above conditions we get the last stable orbit

(marginally stable orbit) rms = 6 (in the units of GM
c2 ) having the angular mo-

mentum λmin ≡ λms = 2
√

3. We have plotted the effective potential for black
hole and Newtonian star in Fig 1.1. The dashed horizontal line in both the dia-
gram represents the rest mass energy of the particle. From the potential diagram
of Newtonian star we can see that only unbound and bound orbit can exist i.e.,
no matter how high the energy of the particle is it can not enter in the star but
in case of black hole, the diagram of Ve f f shows that depending of the angular
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momentum and the energy of the particle black hole may capture them i.e. par-
ticles can exist in capture orbits. From this we can get an idea of initial energy
value and angular momentum value of the injected flow which we shall use in
the simulation.

1.1.2 Pseudo-Newtonian approach

In case of all astrophysical systems involving black holes it is necessary to use
general relativistic approach to solve the problem as long as one is not interested
in the region very close to the horizon. Instead of full general relativistic ap-
proach, a Paczyński & Wiita type potential can also be used (Paczyński & Wiita
1980). This potential is known as the pseudo-Newtonian potential and is given
as,

ΦPN = − 1
2(r− 1)

(1-7)

which is written in units of 2GM
c2 and thus we can find the effective potential as,

VePN = 1 + ΦPN +
λ2

2r2 (1-8)

Using the condition for circular orbits we can find the Keplerian angular momen-

tum distribution to be given as
√

r3

2(r−1)2 which is the same as the result produced
by the GR approach. Also in pseudo-Newtonian approach the binding energy
of the particle at the marginally stable orbit is found to be 6.25% as compared to
5.72% for the GR approach. Thus, this pseudo-Newtonian approach is quite ac-
curate and hence we believe we can use this potential successfully to mimic the
GR effects in our simulations.

1.2 Accretion processes

The process by which the diffused gas or matter accumulates around a compact
object due to gravity is called accretion. Accretion is the main source of power
of these objects and is of high importance in study of X-ray binaries. In case of
binaries accretion happens in two ways. First, when the companion star fills the
Roche lobe, matter passes through the innermost Lagrange point (L1) and second,
matter coming out of a bloated star in its evolutionary phase may also be cap-
tured by the compact object and they enter towards the compact object through
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Lagrange points of the Roche lobe. This is known as wind accretion. Apart from
these binary systems, isolated compact objects accrete when they pass through
interstellar medium or pass by nearby stars and accrete matter from them by
tidal effects. Matter falling onto the compact objects, due to its intrinsic angular
momentum forms a disc like structure which is called Accretion disc. When ac-
cretion takes place, the gravitational energy of the matter is converted into the
kinetic energy and heat which is then partly released as radiation. If the accreted
matter is ionized hydrogen and radiation exerts force mainly on the electrons by
Thomson scattering (because the scattering cross section for protons is a factor(me

mp

)2 smaller than that of electrons) and this force is felt by the protons also due
to Coloumb coupling. There exists a critical limit of the luminosity above which
the radiation pressure exceeds gravity and this limit is called Eddington luminos-
ity (LEdd) which is given as,

LEdd =
4πcGMmp

σ
= 1.3 × 1038 M

M�
erg s−1. (1-9)

The mass equivalent of LEdd is called the mass Eddington rate (ṁEdd) and is
given by,

ṁEdd =
LEdd

c2 = 1.44 × 1017 M
M�

gm s−1. (1-10)

Since matter coming from the companion star in a binary system possesses
some angular momentum, it will not fall freely onto the compact object. Instead
it will form a disc like structure. At some distance from the black hole, the cen-
trifugal force is comparable to the gravitational force and the matter begins to ro-
tate in circular orbits. The matter can approach towards the gravitational radius
only if there exists some mechanism that can transport the angular momentum
outward and this mechanism is believed to be effective due to the presence of
viscosity. The efficiency of the mechanism of the angular momentum transport is
characterized by the parameter,

α =
vt

vs
+

H2

4π$vs2 (1-11)

where
$vs

2

2
=

3
2

$
kT
mp

+ εr (1-12)

is the thermal energy density of the matter, εr is the energy density of radiation, vs

is the sound velocity and vt is the turbulent velocity (Shakura & Sunyaev, 1973).



Chapter 1. 7

1.3 Overview of theoretical disc models

Historically, the study of accretion started with the study of the interaction of a
spherical gravitating star moving supersonically in a uniform medium which is
described in the pioneering work of Hoyle and Lyttleton (1939) and Bondi and
Hoyle (1944). They tried to quantify the matter accumulation on the star sur-
face from the interstellar medium but they did not consider the pressure term.
Bondi in 1952 used the pressure term and obtained the complete transonic flow
solution for spherical flows. This solution was later applied by Parker (1959) to
explain winds emerging from the sun. The simple spherical flow was then im-
proved upon by addition of angular momentum to it. Many research groups
such as, Lynden-Bell (1969); Zeldovich & Novikov (1973); Ostriker et al. (1976);
Chakrabarti (1989, 1995, 1996 etc.) have contributed significantly in shaping up
the theoretical and analytical aspects of the accretion disc.

1.3.1 Standard disc model

Shakura & Sunyaev (1973) (SS73) proposed a model for accretion disc which they
assumed to be thin i.e., the height of the disc at a radial distance is very small
compared to the radial distance (H(r) << r). They also assumed that the matter
revolves around the compact object in circular Keplerian orbits. In SS73 paper
Newtonian potential was considered and Novikov & Thorne repeated the cal-
culations using General Relativistic approach as well. According to this model
viscosity transports angular momentum efficiently and slowly spirals inward
with Keplerian angular momentum. The heat generated by the viscous stress
is radiated away efficiently in the vertical direction and the disk cools down
kT << GMmp/r. Some part of the gravitational energy increases the kinetic
energy of rotation and other part converted into thermal energy. In the thin disk
limit, vertical velocity could be neglected compared to the radial velocity or az-
imuthal velocity. The accretion rate is considered to sub-Eddington and the pres-
sure is negligible so that the radial force balance equation dictates the specific
angular momentum distribution to become Keplerian. A Keplerian circular orbit
of radius r around a Newtonian star has an angular momentum,

l̃ = (GMr)1/2. (1-13)
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Let 2H be the vertical height of the disk and Σ be the surface density of the disc
at radius r. Therefore,

Σ ≡
∫ H

−H
ρdz. (1-14)

ρ is computed on the mid plane of the disc. Replacing the integral of products by
the product of the averages, the above integral becomes,

Σ ≈ 2Hρ. (1-15)

For a Keplerian disk, the stress tensor is

trφ = ηr
dΩ
dr

= −3
2

ηΩ, (1-16)

where,
Ω2 = GM/r3 (1-17)

is the Keplerian angular velocity. Let fφ denote the viscous stress exerted in the φ

direction by the fluid element at r on neighboring element at r + dr. The viscous
stress is related to the stress tensor according to fφ = −trφ and therefore,

fφ = −trφ =
3
2

ηΩ =
3
2

η(GM/r3)1/2. (1-18)

Here η is the dynamic viscosity coefficient. In order to obtain a steady disc con-
figuration one has to solve for the equations governing conservation of mass, the
specific angular momentum, specific energy and the vertical momentum equilib-
rium (For detailed discussion see Chakrabarti, 1996 (Physics Report), SS73). These
are given as,

Ṁ = 2πrΣvr = constant (1-19)

G = fφ(2πr.2H)r = Ṁ(GM)1/2(r1/2 − r1/2
I ) (1-20)

F(r) = HQ+ =
3ṀGM

4πr3 [1− (
rI

r
)1/2]. (1-21)

H
r
∼ as

vφ
(1-22)

Using the above mentioned equations as well as the α viscosity prescription we
can solve for the physical quantities that are needed to describe structure and
thermodynamic property of the disc (Chakrabarti, 1996 (Physics Report), SS73).
Hence, we have,
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F(r) = 5× 1026M−2Ṁ17r−3[1−
√

6
r
] erg cm−2s−1,

Σ(r) = 7α−1MṀ−1
17 r3/2[1−

√
6
r
]−1 gm cm−2,

H(r) = 105Ṁ17[1−
√

6
r
] cm,

ρ(r) = 3× 10−5α−1MṀ−2
17 r3/2[1−

√
6
r
]−2 gm cm−3,

T(r) = 5× 107(αM)−1/4r−3/4 K,

τes(r) = 3α−1MṀ−1
17 r3/2[1−

√
6
r
]−1

All these are written in GM/c2 unit. The surface temperature can be measured
using local effective temperature.

Ts(r) = [
F(r)

σ
]1/4 ≈ 5× 107(

M
M�

)−1/2Ṁ1/4
17 r−3/4(1−

√
6
r
)1/4 K. (1-23)

In case of stellar mass black holes, the effective temperature peak occurs at around
1 KeV. For AGNs, this peak shifts toward the UV-region and known as the big
blue bump (Malkan & Sargent 1982; Malkan 1983; Sun & Malkan 1989; Chakrabarti
2010).

1.3.2 Thick disc model

A thick disc model refers to a geometrically thick disc where H(r) ∼ r. The disc
becomes thick when the thermal energy (∼ a2) becomes comparable with the
gravitational energy (Rees 1984, Chakrabarti 1996). Depending upon the cause of
dominating pressure, a thick disc can be of two types, (i) radiation pressure dom-
inated (Paczyński & Wiita, 1980) and (ii) ion pressure dominated (ion-tori model)
(Rees et al., 1982). When the accretion rate is high, the radiation pressure domi-
nates. The radiation emitted by the infalling matter exerts a significant pressure
on the infalling gas and this pressure must be incorporated to find the dynamical
structure of the disc. The radial component of the Euler equation can be written
as,

u
dv
dr

+
1
ρ

dP
dr
− λ2

r3 +
dφ

dr
= 0, (1-24)
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where λ is the angular momentum of the flow and φ is the potential (pseudo-
Newtonian or Newtonian) of the gravitational field. Ignoring the advecting term,
we can write the angular momentum distribution as (Chakrabarti, 1996a),

λ ∝
{

r3 dφ

dr
+

r3

ρ

dP
dr

}1/2

. (1-25)

We can see that when the pressure gradient term is zero or the pressure itself is
zero, the angular momentum distribution is Keplerian. If pressure gradient term
is positive, the angular momentum is higher than the Keplerian value and vice
versa. In case of ion pressure dominated disc, the accretion rate is very small and
due to inefficient radiative cooling, the flow is hotter causing the disc to puff up
(Rees, 1984). One important characteristics of the equipotential surfaces of a thick
accretion disk around a black hole is the presence of a cusp. The cusp is formed at
the inner edge (ri) between the marginally bound (2 rg) and the marginally stable
(3 rg) orbits. Matter fills the closed potential and forms the thick accretion disk,
and the excess matter is accreted to the black hole through the cusp.

1.3.3 Advective Accretion disc

Applications of the standard Shakura-Sunyaev disk, the thick disk or the spheri-
cal accretion models are limited in the sense that either the advective effect or the
pressure gradient effect or the effects of rotation were not taken into account. In
the early 90s, Chakrabarti and his collaborators (Chakrabarti, 1990; Chakrabarti
& Molteni, 1993; Chakrabarti, 1996b; Molteni, Sponholtz & Chakrabarti, 1996) for
the first time presented a global and complete accretion disk solution incorporat-
ing all the physical processes while solving the most general flow equations. The
aim was to achieve a single paradigm so that all observational features could be
explained within a single framework.

An advective disk is the one that advects, or carries ‘something’, namely, the
mass, entropy, energy etc. Since this fundamentally means that radial velocity
must be important. In advective disks the radial velocity may reach even veloc-
ity of light (c) on the horizon. Therefore, before entering into a black hole, matter
had to be supersonic (i.e., Mach number, M = v/a > 1, where v is the radial
velocity and a is the sound speed which can have a maximum value of c/

√
3).

Thus, the advective flow must pass through at least one sonic point (i.e., the flow
is transonic) as a sub-Keplerian flow (angular momentum must be less than the
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Keplerian angular momentum). One more aspect of the advective disk is that the
infall time close to the black hole is so small that the viscosity, which transports
the angular momentum and thus makes accretion possible, does not get suffi-
cient time to transport the angular momentum. Hence the angular momentum
λ of the flow remains almost constant close to the black hole. Since the centrifu-
gal force ∼ λ2/r3 grows at a much faster rate near the black hole as compared
to the gravitational force ∼ 1/r2, the matter slows down. The incoming matter
piles up on the top of this matter and a shock may form. Dividing the entire
parameter space spanned by angular momentum λ and specific energy ε of the
flow, one can show (Chakrabarti, 1990) that for a large region of the parameter
space, a stable solution can have a standing shock. Depending on physical pa-
rameters, a shock may be oscillating in nature or it may even be absent. At the
shock, the flow kinetic energy is converted into thermal energy forming a hot
Compton cloud which can inverse-Comptonize the soft photons into hard pho-
tons and produce outflows and winds. This region is called CENtrifugal pressure
supported BOundary Layer (CENBOL).
Two Component Advective Flow (TCAF) is a combination of two types of flows:
Keplerian component which is accreted in long, viscous time scale and the ini-
tially sub-Keplerian component, which plunges in short, free-fall time scale. In-
side the post shock region or CENBOL, the Keplerian matter mixes up with the
sub-Keplerian halo and forms a single component (Chakrabarti, 1997 and refer-
ences therein). The low energy photons or soft photons generated from the Keple-
rian disc are intercepted by the hot electron cloud or CENBOL and are energized
by inverse comptonization. Eventually they emerge as hard photons.

1.4 Jets and Outflows and importance of magnetic fields

Astrophysical jets are a ubiquitous phenomenon along which mass, momentum,
energy, and magnetic flux are channeled from stellar, galactic, and extra galactic
objects to the outer medium. Geometrically, these jets have very small angle i.e.,
narrow conical or cylindrical/semi-cylindrical protrusions. Highly collimated
supersonic jets and less collimated outflows are observed to emerge from a wide
variety of astrophysical objects. They can be seen in young stellar objects, proto-
planetary nebulae, compact objects such as black holes, microquasars, X-ray bi-
nary stars, and in the active galactic nuclei (AGNs).Jets span a large range of
luminosity and degree of collimation, starting from those emerge from the AGNs
which produce most powerful jets to the jets associated to low-mass young stel-
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lar objects within our own galaxy. In the intermediate region of this spectrum,
between two extreme cases, evidences of outflows associated with neutron stars,
massive X-ray binary systems, and galactic stellar mass black holes can be found.
Less collimated supersonic outflows are often seen to emerge from massive hot
stars in their late stages of evolution, e.g., the LBV (luminous-blue-variable) stars
and also from low mass stars in their late evolutionary stages, like the proto-
planetary nebulae. Most of these outflows, though they are different in vari-
ous aspects such as physical scales and power, are morphologically very similar
which indicates that they are originated through common physical processes. All
the jet classes share common properties. In general, they (i) are highly collimated
and in most cases two-sided, (ii) originate from the vicinity of compact objects,
(iii) show a chain of more or less regularly spaced emission knots which in some
cases move at high speeds away from the central source, (iv) often terminate
in emission lobes, which are believed to be the âĂİworking surfacesâĂİ where
the jets shock against the ambient medium, (v) are associated with the magnetic
fields, and (vi) show evidences of accretion of matter onto central source via an
accretion disc.

1.4.1 Jets from Young Stellar Objects (YSO)

Protostellar jets are produced during the major accretion phase of the star for-
mation process, i.e., during the class 0 and I phases of the life of a protostel-
lar core/young star. This phase of the star formation process is thought to last
about 105 yr (Lada 1999). The YSO jets have typically projected lengths between
0.01-few pcs. Many of them can be classified as Herbig-Haro(HH) objects which
show a linear chain of bright, traveling knots. These jets often terminate in a bow
shock like structure where the jet impacts with a slower ambient medium (Fig.
1.3). Outflows from young stars manifest observational data over a wide range of
wave lengths from the ultraviolet to the radio. From the available high resolution
observations it can be seen that the flow coming out of a stellar or circumstellar
region is bipolar. Well collimated flow sweeps up the ambient molecular gas in
its vicinity, creating two cavities oriented in opposite directions with respect to
the central star. The molecular gas displaced from the cavities expands in the
form of irregular lobes and incomplete shells and constitutes the CO outflow.
Bipolar outflows from YSOs contain ionized, atomic, and molecular gas. It has
mainly two components, i) relatively cold molecular gas traced by classical (SHV)
CO outflows, and ii) EHV CO component. All the luminous structures produce
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Figure 1.2: Hubble Space telescope images of three YSO (also called Herbig-
Haro(HH) objects) jets. The HH 30 jet is observed to emerge from the embedded
source surrounded by a disk of gas and dust. Terminal bright bow shocks are
clearly seen on both sides of the HH 46 jet, and a chain of emission knots in HH
34 jet. (Credit: C. Burrows (STScI & ESA), J. Hester (Arizona State University), J.
Morse/STScI and NASA)

emission line spectra in the mainly in optical and infrared bands. Spectral lines
give information on local temperature and density, on the bulk velocity of the jet
emitting matter and on the presence of shocks along the jet. Prominent features
include hydrogen Balmer lines and transitions of neutral atoms and ions. High
ionization and excitation lines can also be observed along with very low excita-
tion spectrum in the inner jet region.

1.4.2 Jets from AGNs

About 10% of AGNs, besides accreting matter, are able to expel a part of it at
relativistic speeds in two opposite directions forming jets with energy in the ra-
dio range. These radio jets can reach up to a few Mpcs in size and tens of times
the radius of host galaxies. AGNs having relativistic jets were believed to have
elliptical as host galaxies but this paradigm was challenged when narrow line
(FWHM ≤ 2000kms−1) Seyfert-1 galaxies were observed. The radio emission
produced by jets is only a small fraction of the entire electromagnetic power they
emit. Since most of it is produced in mm-optical and in γ-ray band, the electro-
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Figure 1.3: The top left picture is a radio image of M87, which is taken with the
Very Large Array (VLA) radio telescope which shows giant bubble-like structures
where radio emission is thought to be powered by the jets. The top right picture
is a visible light image of the giant elliptical galaxy M87. The bottom picture is
a Very Long Baseline Array (VLBA) radio image of the region close to the black
hole. (Credit: HST press release)

magnetic output is only a small fraction of the total power carried by the jet. Most
of it is spent to give sufficient kinetic energy to the matter in order to achieve rela-
tivistic speed and to move the magnetic field, i.e., the Poynting flux. In powerful
sources it reaches large radio structures like hot spots and the radio lobes which
are absent in less powerful candidates. Powerful sources are called FR II radio
galaxies and weaker ones are called FR I radio galaxies. Since the emitted matter
is moving with a bulk Lorentz factor, we see that for the part of the jet pointing
towards us, the intensity gets amplified and if the jet points in the opposite direc-
tion, the intensity is suppressed. The large structures (e.g., hot spots, radio lobes)
being static, their emission remains isotropic. The ratio between the jet emission
and the radio lobe emission is thus is a strong function of the viewing angle.
Hence, it can be inferred that, (I) at very low frequencies the emission is always
dominated by the lobe, irrespective of the viewing angles, (II) Lobe and jet emis-
sion are equal at some frequency which increases as the viewing angle increases,
and (III) aligned sources give a flat radio spectrum and misaligned sources show
a steep radio spectrum. Sources whose jets are pointed towards the observer are
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called blazars. Classifications of blazars are done depending on either how they
were discovered or the location of their synchrotron peak, or the presence or ab-
sence of broad emission lines.

EW =
∫ F0 − Fλ

F0
dλ

those with weak or absent line and EW < 5 Å are called BL Lac objects and
those with strong emission lines and EW > 5 Å are called Flat Spectrum Radio
Quasars.

1.4.3 Jets from Stellar Mass Black Hole & Microquasars:

Microquasar or relativistic jets from stellar mass black holes in binary stars emit-
ting X-rays (Black Hole X-Ray Transients or BHXRTs), are scaled down versions
of AGN jets, typically extending for 1 pc. Since all the timescales for black holes
are proportional to mass, the accretion-ejection phenomena is expected to last
much shorter as compared to AGNs. As matter approaches near the compact ob-
ject the centrifugal force becomes comparable to the gravitational force and thus
slowing the inflow considerably and the flow may suffer a shock, where the Mach
number jumps discontinuously from supersonic to subsonic. This region may be
thin or extended depending upon whether the shock condition namely Rankine-
Hugoniot conditions are satisfied or not. This hot, slowed-down region puffs
up and forms a torus called CENBOL. The outflow can be formed in this region
since it is hotter as compared to a disk. At the shock, a fraction of accreting matter
bounces off the centrifugal barrier and is ejected along the axis of symmetry as
outflows or jets. Some amount of this outflow also fed back to the sub-Keplerian
flow. It has been shown that the collimation of jets is possible by toroidal mag-
netic field which is accreted by the compact object from the companion. Since
the azimuthal component of the velocity is very high, it will convert the accreted
random magnetic flux tubes into toroidal flux tubes. These flux tubes can either
be stored or expelled towards the funnel and due to buoyancy it will float up.
These expelled flux tubes will then eventually puff up. Since matter cannot radi-
ally expand through the flux tubes due to Lorentz force, the flux tubes would end
up collimating the outflows.
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Figure 1.4: Images obtained with the Very Large Array (VLA) of jets in a FR I
source 3C31 at the radio freq. 1.4 GHz and 8.4 GHz. (Credit: NRAO/AUI by R.
Laing, A. Bridle, R. Perley, L. Feretti, G. Giovannini, and P. Parma (Laing 1996))
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1.4.4 Magnetized disc: A Brief Review

As discussed earlier, the accretion discs are important because the only observa-
tional evidence of black holes that one can get is its radiation and accretion is
the main source which fuels this. An accretion flow is Transonic and has shocks
which is due to tug of war between centrifugal force and gravitational force. The
puffed up post-shock region or CENBOL acts as a region for which a part of the
inflowing matter ejected as an outflow and when it is collimated and accelerated,
it gives rise to relativistic jets of which many observations were made. How-
ever, a clear understanding of formation, acceleration, and collimation of these
jets has been eluding the astrophysicists. Historically, the theoretical approach
to study the collimation and acceleration started with the study of thin as well
as geometrically thick discs as it was believed that the origin of bipolar jets is
somehow related to the properties and geometry of the accretion discs. Along
with the viscosity, outflows and jets can also transport angular momentum from
the disc very efficiently and thus helping the accretion process and since vari-
ous properties of outflow heavily rely upon the properties of disc, theoretical as
well as numerical disc model must produce disc and jet simultaneously. Several
theoretical models (Blandford & Payne 1982, Chakrabarti & Bhaskaran 1992, Ca-
menzind 1989), Heyvaerts & Norman 1989), Lovelace 1976, Königl 1989) etc.) in
the context of thin disc it was shown that the hydromagnetic processes are cru-
cial in explaining collimation and acceleration of outflows/jets. However, there
are no satisfactory numerical work that can successfully produce collimated and
accelerated outflows/jets originating from a magnetized disc although separate
simulations of magnetized discs and jets exist. Blandford & Payne (1982) consid-
ered an infinitesimally thin, cold, Keplerian disc from which centrifugally driven,
self-similar MHD wind originates provided the poloidal component of the mag-
netic field makes an angle less than 60o with the disc surface. At large distance
from the disc the toroidal component becomes dominant and collimates the out-
flow creating a bipolar jet coming out of the disc perpendicularly. . Contopoulous
& Lovelace (1994) assume a power-law distribution of magnetic field in case of a
self-similar, infinitesimally thin Keplerian disc and show that asymptotically col-
limated jets can be obtained for a particular set of power indices. Königl (1989)
numerically determined the radially self-similar solutions for the magnetic field
configuration inside a cold, partially ionized Keplerian disc and also showed that
for certain set of disc parameters, Blandford-Payne type winds can be produced
that attain super-Alfvénic velocity and can be magnetically collimated at a finite
distance from the disc surface. Chakrabarti & Bhaskaran (1992) provided a more
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general solution of the field. They solved for the field outside and the inside the
disc as well, simultenously and showed that a well collimated bipolar outflows
and radio jets are possible to achieve in a self-consistent manner from magne-
tized protostellar disc and active galactic nuclei. Similar to previous works of
Blandford & Payne and Königl they also considered the field to be self-similar in
radial direction but functional form of field inside and outside the disc is differ-
ent. Instead of considering a Keplerian disc, they assume a disc with an angular
momentum distribution assumed to be a power-law function of the radial dis-
tance. They analytically solve the complete set of Euler-Maxwell equation. In
their work they showed that there exists a complete set of solution for magne-
tized disc which allows an accelerated and collimated outflow to form. Another
genre of magnetized disc solutions are present in the literature where the back-
ground flow is assumed to be the standard Keplerian disks and the magnetic field
is assumed to be sheared and advected by the flow (Khanna & Camenzind, 1992;
Lovelace et al. 1987; Wang et al. 1990). In those works, it can be seen that for
sufficient supply of magnetic flux to the disc, the fine structure close to the disc
surface can become Blandford-Payne type and be able to, in principle, launch
cosmic jets. The gravitomagnetic potential of a rotating black hole in presence of
a differentially rotating disk is seen to drive a self-excited dynamo and amplify
weak (even axisymmetric) magnetic field to a higher field strength (Khanna &
Camenzind 1994). A large body of literature is present that explores many as-
pects of the effects of buoyancy and shear amplification on these magnetic flux
in the paradigm of thin accretion disc (e.g., Eardley & Lightman 1975, Galeev et
al. 1979, Coroniti 1981, Shibata et al. 1990, Chakrabarti et al. 1994). All the works
discussed above are in the context of thin accretion disc or standard Keplerian
disc. In a magnetized thick accretion disc, due to resultant effects of magnetic
tension and buoyancy, toroidal flux tubes are ejected from different parts of the
disc creating a magnetically active region. This can, in principle, launch colli-
mated jets. General idea of thick disc has already been discussed in the previous
section. Thick accretion discs have a vortex like opening due to strong centrifugal
force near the black hole (Lynden-Bell, 1978) on the either sides of the disc and the
anisotropic radiation field at that region could be sufficiently strong to launch ra-
dio jets. However, in case of rapid variabilities found in blazars in optical regime
(Miller 1988; Miller, Carini, Goodrich 1989; Wagner et al. 1990; Carini et al. 1992;
Noble 1995; Noble & Miller 1996; Kidger & de Diego 1992) and in AGNs in X-Ray
band (Treves et al. 1982; McHardy & Czerny 1987; Lawrence et al. 1987; Abraham
& McHardy 1989) plausible explanation involves relativistic shock in-jet models
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Figure 1.5: Trajectories of toroidal flux tubes released at the positions
R = 4, 5, 6, 8, 10 rg drawn on the R− z plane. This figure is drawn for n = 0 i.e.
for constant angular momentum. This figure is reproduced using the parameters
from Chakrabarti & D’Silva, 1994.

(Blandford & Königl, 1979; Hughes, Aller, & Aller 1985, 1989; Marscher & Gear,
1985; Marscher, Gear & Travis , 1992; Türler, Courvoisier, & Paltani 1999, 2000;
Aller, Aller, & Hughes, 2003; Vlahakis & Königl, 2004; Camenzind, 2005) which
require magnetic activity at the base of the jet. A thorough analytical study of the
behavior of toroidal magnetic flux tubes in the backdrop of thick accretion discs
has been studied by Chakrabarti & D’Silva (1994a, hereafter CD94) and D’Silva &
Chakrabarti (1994b, hereafter, DC94) which also ensures the "chimney" like open-
ing of the disc to be a magnetically active region. They showed that depending
upon various flows and field parameters, such as, initial position of release, cross-
sectional radius of the flux tubes, angular momentum distribution, etc. flux rings
injected into thick disc will emerge into the "chimney" (funnel like opening at the
inner part of the disc). The disc thermodynamic parameters were time indepen-
dent while flux tube is allowed to be advected in with a suitably chosen radial
flow. The magnetic field is expected to be brought along with the in-falling mat-
ter and are expected to be sheared to form mainly toroidal flux tubes in the disc.
Due to the joint effects of drag, Coriolis force, magnetic tensions, buoyancy force a
significant fraction of these fields are found to be emerging in the funnel whereas
the remaining fraction would be expelled from the outer parts of the disc. It was
shown that (1) if the disc is sufficiently hot (Tp > 4× 1010K), the magnetic tension
dominates over all other effects and the tube collapses catastrophically towards
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Figure 1.6: Trajectories of toroidal flux tubes released at the positions
R = 5, 10 rg drawn on the R − z plane. This figure is drawn for n = 0 i.e.
for constant angular momentum. This figure is reproduced using the parameters
from D’Silva & Chakrabarti, 1994.

the axis and thus squeezing out matter in the disc along the axis of the black hole
in the process to form radio jets. (2) Formation of coronal structure is possible
since this require ability to anchor the flux tubes inside the disc and because flux
tubes can oscillate inside the disc with proper entropy condition, the disc can
have an internal structure similar to the solar interior. If the entropy condition
is proper, the coronae would form, otherwise it would come out of the disk as
a whole without causing any flare. In the former case, there would be sporadic
flaring events on the disc surface, whereas in the latter case, the collapse of fields
in the funnel would cause destruction of the inner part of the disk and formation
of blobby radio jets. Detailed observation of GRS1915+105 shows these features
(Mirabel & Rodriguez 1994, Nandi et al. 2001). These processes could also be
responsible for the formation of jets in active galaxies.
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Governing equations and Computational scheme

In this present Chapter, the equations that govern the dynamics of flow around
a black hole are discussed. The numerical methodology and schemes to solve
these equations are discussed as well. In case of an accretion disc, matter coming
from the binary companion is essentially ionized plasma consisting of electrons
and ions at the vicinity of a black hole. Generally it is assumed that an accretion
flow onto a compact object is hydrodynamic in nature. The fluid approximation
holds if the characteristic length scale of the system which are being studied, is
much larger than the collision length. Furthermore, the characteristic time scale
over which the dynamics is studied is much larger than the collision time. The
self-gravity of the flow and any change in the mass of the central object is not
considered. Owing to its fluid nature, the dynamics of the accreting matter is
governed by Navier-Stokes equation. In the following sections the implementa-
tion of the hydrodynamic equations are discussed in details.

2.1 Hydrodynamic flow equation

The Navier-Stokes equation is comprised of three conservation laws, namely, (i)
mass conservation law, (ii) momentum conservation law, and (iii) energy con-
servation law. The mass conservation law is known as the continuity equation.
Similarly, momentum conservation law yields momentum equation and energy
equation yields energy conservation law. The three equations are (Landau & Lif-
shitz, 1959),

∂ρ

∂t
+ ~∇.(ρ~v) = 0 (2-1)

21
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ρ
∂~v
∂t

+ ρ~v.~∇~v = −~∇P + ~Fext (2-2)

∂

∂t
(1

2
ρv2 + ρε

)
+ ~∇

[(1
2

ρv2 + ρε + P
)
.~v
]
= ~F.~v− ~∇.~Frad − ~∇.q (2-3)

Equtions 2.1, 2.2, and 2.3 are continuity, momentum density, and energy density
equation respectively. In equation 2.2, P is the gas pressure and ~F is the external
force which includes gravitational force, viscosity, body forces such as electro-
magnetic forces etc. For viscous flow the effect of viscosity is manifested through
the viscous stress tensor. The terms, ρv2 and ρε in the eq. 2.3 are the measures of
kinetic energy and internal energy density. ~Frad is the radiative flux vector and~q is
conductive heat flux. Alongwith these conservation equations, in the absence of
an energy equation, one needs an equation of state to describe the astrophysical
flows completely. For this purpose, the ideal gas equation is given as,

P =
ρkT
µmp

(2-4)

where, k is the Boltzmann constant, T is the temperature, mp is the mass of hy-
drogen atom and µ is the mean molecular weight for neutral hydrogen, µ = 1
and for fully ionized hydrogen, µ = 1

2 .

2.2 equations for inviscid flow

Equations governing inviscid flow can be obtained from the Navier-Stokes equa-
tions by imposing some constraints. Since the flow is inviscid, no contribution
from viscous stress tensor will be there and also heat flux vector is ignored (Lan-
dau & Lifshitz, 1959). Equation 2.1 remains the same. Equation 2.2 is modified
to,

ρ
∂~v
∂t

+ ρ~v.~∇~v = −~∇P + ~Fg (2-5)

and also the energy equation (eq. 2.3) is changed to

∂

∂t
(1

2
ρv2 + ρε

)
+ ~∇

[(1
2

ρv2 + ρε + P
)
.~v
]
= ~Fg.~v (2-6)
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since no radiative cooling was considered, ~Frad is ignored. ~Fg is the gravitational
force term which is given as,

~Fg = Fgr r̂ + Fgzẑ (2-7)

where,

Fgr = −ρ
1

2(
√

r2 + z2 − 1)2

r√
r2 + z2

, (2-8)

Fgz = −ρ
1

2(
√

r2 + z2 − 1)2

z√
r2 + z2

. (2-9)

Here, pseudo-Newtonian type potential is used which has the form of 1
2(R−1)

where, R =
√

r2 + z2 (Pacyzński & Wiita, 1980). Here, cylindrical co-ordinate
system is used. The equation of state used here can be derived from the ideal gas
equation using expression of internal energy and it takes the form,

ε =
P/ρ

γ− 1
(2-10)

where, P is the gas pressure and ε is the internal energy. It is convenient to write
the set of hydrodynamical equations in terms of conserved variable such as den-
sity (ρ), momentum (ρ~v, and energy (E). Hence we simply rearrange the equa-
tions 2.2, and 2.3 (Ryu et al 1995; Molteni, Ryu, Chakrabarti 1996 [MRC98]). From
eq 2.2 using cylindrical coordinate system and writing component wise we get,

ρ
∂vr

∂t
+ ρvr

∂vr

∂r
+ ρvz

∂vr

∂z
+

∂P
∂r

= −ρvθ
2

r
− ρr

2(
√

r2 + z2 − 1)2
√

r2 + z2

(2-11)

ρ
∂vθ

∂t
+ ρvr

∂vθ

∂r
+ ρvz

∂vθ

∂z
+ = −ρvrvθ

r
(2-12)

ρ
∂vz

∂t
+ ρvr

∂vz

∂r
+ ρvz

∂vz

∂z
+

∂P
∂r

= − ρz
2(
√

r2 + z2 − 1)2
√

r2 + z2
(2-13)

Now in order to write in terms of conservative variable from eq. 2.11 and using
ρvr

∂vr
∂r = rρvr

r
∂vr
∂r = 1

r
∂
∂r (rρvr

2)− vr
1
r

∂
∂r (rρvr

2) and ρvz
∂vr
∂z = ∂

∂z (ρvrvz)− vr
∂
∂z (ρvz)

and also using eq. 2.1 we have,
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∂(ρvr)

∂t
+

1
r

∂(rρvr
2)

∂r
+

∂P
∂r

+
∂(ρvrvz)

∂z
= −ρvθ

2

r
− ρr

2(
√

r2 + z2 − 1)2
√

r2 + z2

(2-14)
Similarly eqs. 2.6, 2.12, and 2.13 can be rearranged and written in terms of con-
servative variable as,

∂(ρvθ)

∂t
+

1
r

∂(rρvθvr)

∂r
+

∂(ρvθvz)

∂z
= −ρvθvr

r
(2-15)

∂(ρvz)

∂t
+

1
r

∂(rρvzvr)

∂r
+

∂(ρvz
2 + P)

∂z
= − ρz

2(
√

r2 + z2 − 1)2
√

r2 + z2
(2-16)

∂E
∂t

+
1
r

∂(r(E + P)vr)

∂r
+

∂
[
(E + P)vz

]
∂z

= − ρ(rvr + zvz)

2(
√

r2 + z2 − 1)2
√

r2 + z2
(2-17)

where, E = 1
2 ρv2 + ρε. Above mentioned four equations eq. 2.14 - 2.17 can be

written in a compact form:

∂q
∂t

+
1
r

∂(rF1)

∂r
+

∂F2

∂r
+

∂G
∂z

= S (2-18)

where, q is the state vector, F1, F2, G are flux vectors and S is called the source
term. Expressions for the state vector, flux vectors and source term are given as,

q =


ρ

ρvr

ρvθ

ρvz

E

 ,

F1 =


ρvr

ρv2
r

ρvθvr

ρvzvr

(E + p)vr

 , F2 =


0
p
0
0
0

 , G =


ρvz

ρvrvz

ρvθvz

ρv2
z + p

(E + p)vz

 ,
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S =



0

ρv2
θ

r −
ρr

2(
√

r2+z2−1)
2√

r2+z2

− ρvrvθ
r

− ρz

2(
√

r2+z2−1)
2√

r2+z2

− ρ(rvr+zvz)

2(
√

r2+z2−1)
2√

r2+z2



. (2-19)

We solve this set of hyperbolic partial differential equations numerically and de-
tail discussion on the numerical schemes and procedure is discussed in the next
section.

2.3 Numerical procedure

In order to solve the fluid dynamics equations mentioned in the earlier section
we have chosen the finite difference method. The basic idea of finite difference
method is that the derivatives in the differential equations are written in terms of
discrete quantities of dependent and independent variable and thus generating a
set of simultaneous algebraic equations with all the unknowns defined at discrete
grid points. We will briefly discuss the basics of the method here.

2.3.1 Finite Difference Method

To illustrate what we started discussing at the start of this section, let us consider
a simple form of a hyperbolic PDE (Chung 2002, Balsara 2013) which is same as
the compact form of the Euler’s equation written in eq. 2.18.

∂U
∂t

+
∂F
∂x

= 0 (2-20)

Using finite difference method we can discretise the differential equation as given
below,
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ui
n+1 − ui

n

∆t
+

Fn
i+ 1

2
− Fn

i− 1
2

∆x
= 0 (2-21)

where ∆x is the grid size and ∆t is the timestep. We shall discuss in the sub-
sequent section how these two should be chosen in case of a hydrodynamical
problem. Now, in case of Euler’s equation describing the inviscid flow a finite set
of dicretized value of density and velocity is defined over a mesh of size N × N.

2.3.2 Construction of Flux Jacobians

Let us first consider a general system of conservation laws in formal notation,

Ut + F(U)x + G(U)y = S(U) (2-22)

where, U is the vector of conserved variables and F & G are the flux vectors and
S is the vector representing the source term. For any such system we can always
derive characteristic matrices and write eq. 2.21 involving them as,

Ut + A(U)Ux + B(U)Uy = S(U) (2-23)

With A(U) = ∂F(U)
∂U and B(U) = ∂G(U)

∂U . There exists another set of variables "V"
called primitive variables which help to simplify the system of PDEs. There is an
invertible Jacobian matrix ∂U

∂V
which gives a relation between any fluctuation in

conservative variable (U) and any fluctuation in primitive variable (V).

2.3.3 Computation of eigenvalues and eigenvectors

In previous sub-section we have discussed the idea of generalized flux Jacobian
using which one can simply write the system of hyperbolic conservation laws in
terms of primimitive variables. The eigenvalues of the characteristic matrices can
be written in an ordered sequential manner as (For detailed discussion see Chung
2002, Balsara 2013),

λ1 ≤ λ2 ≤ ... ≤ λm (2-24)

Associated with m eigenvalues, λi with i = 1, ...., m, we can define right and left
eigenvectors as,
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Ari = λiri; liA = λili (2-25)

The eigenvectors can be arranged in such a way so that we can write a matrix R
whose ith column is ri. Similarly, we can obtain a matrix for left eigenvectors L as
well. We have LR = I as left and right eigenvectors are orthonormal. Defining a
diagonal matrix Λ = diag {λ1, λ2, ..., λm} we can write,

LAR = Λ or A = RΛL (2-26)

From eqn. 2.22 ignoring the source term we get a system of m equations involv-
ing a scalar variable called characteristic variable or eigenweight. The system of
equations is given by,

∂twi + λi∂xwi + βi∂ywi = 0 (2-27)

This equation yields a wave like solution for both continuous and discontinuous
initial data where initial profile for each characteristic field is advected with ap-
propriate wave speed giving rise to a m number of simple waves. With this we
next stumble upon the Riemann problem. In next subsection we shall see the
application of these aforementioned procedure to Euler equation.

2.3.4 Euler equation

We first consider the compact vector form of Euler equation written in eqn. 2.18
and rewrite the flux functions as (Ryu et al. 1993, Chung 2002),

F(U) = F(q) = F1(q) + F2(q); G(U) = G(q) (2-28)

and their corresponding Jacobian matrices are A(q) = ∂F(q)
∂q and B(q) = ∂G(q)

∂q .
We can easily obtain their eigenvalues using the method described in 2.3.2 and
2.3.3. The eigenvalues of A(q) are given as,

λ1 = vr − cs, λ2 = vr, λ3 = vr, λ4 = vr, λ5 = vr + cs (2-29)

and eigenvalues of B(q) can be obtained by proper permutation of the indices.
The corresponding right eigenvectors are,
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R1 =


1

vr − cs

vθ

vz

H − vrcs



R2 =


0
0
1
0
vθ



R3 =


1
vr

vθ

vz

Θ/2



R4 =


0
0
0
1
vz



R5 =


1

vr + cs

vθ

vz

H + vrcs

 (2-30)

where, H = (E+ P)/ρ is enthalpy and Θ = (v2
r + v2

θ + v2
z)/2. The orthonormal

set of left eigenvectors are given as,
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L1 =

(
(γ− 1)Θ/2 + csvr

2c2s
− (γ− 1)vr + cs

2c2s
− (γ− 1)vθ

2c2s
− (γ− 1)vz

2c2s

γ− 1
2c2s

)
(2-31)

L2 =

(
− vθ 0 1 0 0

)
L3 =

(
1− (γ− 1)Θ

2c2s

(γ− 1)vr

c2s

(γ− 1)vθ

c2s

(γ− 1)vz

c2s
− γ− 1

c2s

)
L4 =

(
− vz 0 0 1 0

)
L5 =

(
(γ− 1)Θ/2− csvr

2c2s
− (γ− 1)vr − cs

2c2s
− (γ− 1)vθ

2c2s
− (γ− 1)vz

2c2s

γ− 1
2c2s

)
(2-32)

The details of the numerical method to solve the eigensystem is given in the fol-
lowing section. For this purpose, we have used a Eulerian grid-based finite dif-
ference method known as the Total Variation Diminishing (TVD) method.

2.3.5 Total Variation Diminishing scheme

The Navier-Stokes equations as well as the Euler equation can be solved numer-
ically using first order upwind scheme accurately and central schemes may also
be used but they come with a drawback of creating excessive damping and also
shock discontinuities may not be well resolved in that case. This trend can be
compensated using upwind schemes but first order upwind scheme may cause
an occurrence of undershoots and overshoots at the discontinuity. A remedy is
provided through low or high resolution second order upwind scheme. All these
schemes employ finite difference method to solve the PDE system.
Harten (1983) came up with a second order high resolution upwind scheme to
solve hyperbolic PDE systems which involves a process called Total Variation
Non Increasing (TVNI) coined by Harten himself and later it was changed to To-
tal Variation Diminishing (TVD) Scheme by other researchers. The crux of the
scheme is as follows. In systems described by PDEs, such as the one dimensional
advection equation described by a hyperbolic PDE as (Chung 2002),
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∂u
∂t

+ a
∂u
∂x

= 0 (2-33)

the total variation (TV) is given as,

TV =
∫ ∣∣∣∣∂u

∂x

∣∣∣∣dx (2-34)

and if written in discretized manner it will be given as,

TV = ∑|un+1 − un| (2-35)

A numerical scheme will be called TVD if it exhibits following property,

TVn+1 ≤ TVn (2-36)

where, n signifies the time in the time iteration. The TVD property ensures that
the total variation given at a timestep is restricted by the initial and boundary
value. It is an explicit second order accurate upwind scheme which is capable of
solving hyperbolic PDE system which is analogous to the Navier-Stokes or Euler
equation. This nonlinear scheme first employs a modification to the flux functions
and then use non-oscillatory first order accurate scheme to achieve second order
accurate solution.

Procedure of TVD

In this section we discuss about the non-linear second order accurate TVD scheme
in brief. The building block of this scheme is a first order monotonic upwind
scheme which gives us the first order fluxes (F∗,ti+1/2) at the ith cell boundary and
modifying it with second order corrections we get second order fluxes (Ft

i+1/2) at
the ith cell boundary. We can define two second order flux corrections using cell
centered fluxes from the adjacent cells depending on the sign of the advection
velocity. Thus we have (Ryu et al. 1993, Giri 2014, Harten 1983, Chung 2002),

∆FL,t
i+1/2 =

Ft
i − Ft

i−1

2
; ∆FR,t

i+1/2 =
Ft

i+1 − Ft
i

2
(2-37)

when advection velocity is positive and when it is negative we have,

∆FL,t
i+1/2 = −Ft

i+1 − Ft
i

2
; ∆FR,t

i+1/2 = −Ft
i+2 − Ft

i+1

2
(2-38)
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A flux limiter is used to determine the appropriate second order corrections,

∆Ft
i+1/2 = φ

(
∆FL,t

i+1/2, ∆FR,t
i+1/2

)
(2-39)

which still obeys the TVD condition. The second order flux corrections are then
added to the first order fluxes to obtain the second order fluxes. Now, the time
updation is done using a second order Runge-Kutta scheme where first we do a
half time step updation given as,

ut+∆t/2
i = ut

i −
(

Ft
i+1/2 − Ft

i−1/2

∆x

)
∆t
2

(2-40)

and then a full step time updation is computed as

ut+∆t
i = ut

i −
(

Ft+∆t/2
i+1/2 − Ft+∆t/2

i−1/2

∆x

)
∆t (2-41)

Roe’s Approximate Riemann Solver:

Instead of dealing with non-linear problem, Roe’s approximate Riemann solver
(Roe, 1981) tackles a linearized version of the problem. In TVD scheme which
is an Eulerian grid based procedure the fluxes are defined at the grid boundary
while the physical quantities such as density, velocity, energy etc. are defined at
the grid centre. Hence we use Roe’s approximation to obtain an average value of
the physical quantities at the grid boundary. Therefore, we have (Ryu 1993, Roe
1981),

vr,i+1/2 =

√
ρivr,i +

√
ρi+1vr,i+1√

ρi +
√

ρi+1
(2-42)

vθ,i+1/2 =

√
ρivθ,i +

√
ρi+1vθ,i+1√

ρi +
√

ρi+1
(2-43)

vz,i+1/2 =

√
ρivz,i +

√
ρi+1vz,i+1√

ρi +
√

ρi+1
(2-44)

Hi+1/2 =

√
ρiHi +

√
ρi+1Hi+1√

ρi +
√

ρi+1
(2-45)
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ai+1/2 =

[
(γ− 1)

{
Hi+1/2 −

1
2

(
v2

r,i+1 + vθ,i+1
2 + vz,i+1

2
)}] 1

2

(2-46)

2.3.6 grid size and time step

Since the numerical scheme discussed here employs finite difference method, we
need a grid based system to implement the scheme. Now, to realize the difference
equation using finite difference we need grid size. If this grid size or grid length
is too coarse it would give spurious result and too fine grid would result in large
truncation errors in the difference equation. Thus, choosing right grid size is
important. The time step is calculated using Courant condition given as,

∆t ≤ ∆x
cs + |v|

(2-47)

which is to be satisfied everywhere.

2.4 viscous flow

In order to study effects of energy dissipation, occurring during the motion of
the flow, on that motion itself we must look into thermodynamic irreversibility
of the motion and one of the reason behind this is internal friction or viscosity.
In case of Euler equations the momentum flux represents a completely reversible
process but in presence of viscosity an irreversible transfer of momentum takes
place from points with higher velocity to the lower. Hence an extra term must
be added to take into account of irreversible viscous transfer and the resulting
momentum flux density tensor yields (Giri, Chakrabarti 2012, Giri 2014)

σik = τik − pδik (2-48)

which is called stress tensor and τik is called the viscous stress tensor. The most
general form of this viscous stress tensor is given by (Landau & Lifshitz 1959),

τik = η

(
∂vi

∂xk
+

∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

(2-49)

Using this and also considering the viscosity coefficients to be constant through-
out the fluid we can have the Navier stokes equation for incompressible fluid
where contribution from viscous stress is given as,
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ρ
∂~v
∂t

+ ρ~v.~∇~v = −~∇P + ~Fb + ~∇τ. (2-50)

Here ø is the viscous stress having six mutually independent components. In
cylindrical coordinates the components of the velocity vector given by~v = (vr, vθ, vz).
The six independent components of the viscous stress tensor (Landau & Lifshitz
1959) are listed here in cylindrical coordinates, τrr, τrθ, τrz, τθθ, τθz & τzz. Since the
flow is incompressible hence the viscous stress tensor becomes,

τik = η

(
∂vi

∂xk
+

∂vk
∂xi

)
(2-51)

If we split all the viscous stress tensor, three components of equation 2.53 takes
the following forms (Landau & Lifshitz 1959 and Acheson 1990). The vr compo-
nent of Navier-Stokes equation is given by

ρ[
∂vr

∂t
+ vr

∂vr

∂r
+

v2
θ

r
+

vθ

r
∂vr

∂θ
+ vz

∂vr

∂z
] =

−∂P
∂r

+ η[
∂2vr

∂r2 +
1
r

∂vr

∂r
− vr

r2 +
1
r2

∂2vr

∂θ2 +
∂2vr

∂z2 −
2
r2

∂vθ

∂θ
] + Fr.

(2-52)

Again, the vθ component is given by

ρ[
∂vθ

∂t
+ vr

∂vθ

∂r
+

vθvr

r
+

vθ

r
∂vθ

∂θ
+ vz

∂vθ

∂z
] =

−1
r

∂P
∂θ

+ η[
∂2vθ

∂r2 +
1
r

∂vθ

∂r
− vθ

r2 +
1
r2

∂2vθ

∂θ2 +
∂2vθ

∂z2 +
2
r2

∂vθ

∂θ
] + Fθ.

(2-53)

Finally, the vz component is given by

ρ[
∂vz

∂t
+ vr

∂vz

∂r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂z
] =

−∂P
∂z

+ η[
∂2vz

∂r2 +
1
r

∂vz

∂r
+

1
r2

∂2vz

∂θ2 +
∂2vz

∂z2 ] + Fz,
(2-54)

where, η is the dynamic viscosity defined by η = µρ and µ is called the kinematic
viscosity. As we have chosen the axisymmetric case, we have neglected ∂

∂θ added
terms. So the above equations reduce as following.
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Equation 2.55 reduces to

ρ[
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
] =

−∂P
∂r
−

v2
θ

r
+ η[

∂2vr

∂r2 +
1
r

∂vr

∂r
− vr

r2 +
∂2vr

∂z2 ] + Fgr.
(2-55)

Equation 2.56 takes the form,

ρ[
∂vθ

∂t
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
] =

−vθvr

r
+ η[

∂2vθ

∂r2 +
1
r

∂vθ

∂r
− vθ

r2 +
∂2vθ

∂z2 ].
(2-56)

Equation 2.57 reduces to,

ρ[
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
] =

−∂P
∂z

+ η[
∂2vz

∂r2 +
1
r

∂vz

∂r
+

∂2vz

∂z2 ] + Fgz.
(2-57)

For a thin accretion flow, we can neglect all the components of stress tensor except
the τrθ component as the dominant contributor to the viscous stress tensor and
only this component will contribute to transporting angular momentum along
the radial direction. Hence the viscous term that will go into the hydrodynamic
equation is given as,

η[
∂2vθ

∂r2 +
1
r

∂vθ

∂r
− vθ

r2 ] =
1
r2

∂

∂r
(r2τrθ), (2-58)

where,

τrθ = ηr
∂Ω
∂r

.

Here, Ω is angular velocity and defined as

Ω =
vθ

r
.

In a binary system, matter flowing out of the companion star and falling onto
the black hole possesses considerable amount of angular momentum relative to
the black hole and this angular momentum prevents free fall of matter. Thus
a mechanism to transport angular momentum is needed. It has long been con-
jectured that outward transport of matter in an accretion flow is driven by the
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turbulence present in the fluid flow. Shakura & Sunyaev (1973) gave the α- pre-
scription of viscosity which introduces a phenomenological shear stress to mimic
the effect of turbulence. This shear stress is proportional to the total pressure and
this shear stress enables the exchange of angular momentum between two neigh-
boring layers of the fluid. Diffusion of randomly moving gas molecule across
shearing interface also generate viscosity, known as molecular viscosity which
is microscopic in nature but it is too small to explain timescales of the evolution
of accretion disc. Thus it is evident that macroscopic turbulence plays a major
role in generating viscosity. Winds and outflows also transport some angular
momentum but it is not a dominating source. Using SSα prescription, we can as-
sume τrθ = −αp, where α is a proportionality factor which need not be constant
throughout the flow. This has been used in the simulations by CM95 and C96. In
Eq. 2.61 we put −αp in the place of τrθ. In that case, the viscous term reduces to

1
r2

∂

∂r
(−r2αp) = −α(

2p
r

+
∂p
∂r

). (2-59)

In case of thick accretion flow, all viscous stress could be significant in flow dy-
namics. Assuming that the flow is thick h ∼ r, the α-prescription could be written
as (e.g., Igumenshchev et al. 1996) as

µ = αsρ
a2

Ωk
, (2-60)

where, αs is constant of order 1, a is the adiabatic sound speed, and

Ωk = [
1
r

∂Φ
∂r

]
1
2

is the Keplerian angular velocity. It is to be noted that the heat generated by the
viscous dissipation is assumed to be radiated away instantly. In the literature,
other viscosity prescriptions are also available such as, the prescription given by
Macfayden & Woosley (1999) where it is stated that the α is constant when vθ > vr

while it is assume to be scaled as vθ/vr in the preshock flow to reduce shear.
The result of the simulation using this prescription remains the same. Thus a
constant α plays a similar role to that in a Keplerian disc (Giri, Ph.D. thesis, 2014).
Contribution from the viscous stress term goes into source term only.
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2.5 Energy equation and cooling

For radiative cooling, ideally we ought to be using Comptonization but since
the process is highly non-linear and non-local we may consider bremsstrahlung
cooling instead which can be computed from the local density and temperature.
However, this process is too weak to have any significant effect. Thus a power-
law type cooling is chosen (Giri, Chakrabarti 2013) with temperature dependence
as Tβ. We have included this in the energy equation (eq. 2.17). The cooling rate is
Λpowcool ∝ ρ2Tβ, where, β > 0 is the cooling index. The energy equation becomes:

∂(ρε)

∂t
+∇.(ρεv) + Λpowcool = 0, (2-61)

where, ε = p/ρ
(γ−1) + (v2

r + v2
θ + v2

z)/2+Φg, is the specific energy, γ is the adiabatic
index, ρ is the mass density. Here, Λcool is the expression for power-law cooling.
So, the energy conservation equation given in eq. 2.17 becomes,

∂E
∂t

+
1
r

∂(E + p)rvr

∂r
+

∂(E + p)vz

∂z
= − ρ (rvr + zvz)

2
(√

r2 + z2 − 1
)2√

r2 + z2
−Λpowcool.

(2-62)
Here, the energy density E (without the potential energy) is defined as, E =

p/(γ − 1) + ρ(v2
r + v2

θ + v2
z)/2, ρ is the mass density, γ is the adiabatic index,

p is the pressure, vr, vθ and vz are the radial, azimuthal and vertical components
of velocity respectively. The default power-law for bremsstrahlung cooling is
obtained by taking cooling index β = 1

2 . In a hydrogen plasma which is es-
sentially an electron-proton system, the expression for bremsstrahlung cooling
process (Lang, 1980; Rybicki & Lightman 1979) is given as,

Λbrems = 1.43× 10−27NeNiT
1
2 Z2g f ergcm−3s−1, (2-63)

where,

NiZ =
ρ

(mp + me)
≈ ρ

mp
, (2-64)

i.e.,
Λbrems = 1.43× 10−27ρ2T

1
2 g f , (2-65)

where, mp is the mass of the proton, T is the temperature, g f is the Gaunt factor.
In our work, to increase the cooling efficiency, we have taken the cooling index
β > 1/2 but β ≤ 1. So the cooling term in Eq. 2.65 reduces to,
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Λpowcool = 1.43× 10−27ρ2Tβg f , (2-66)

where, everything is expressed in CGS units and g f is the Gaunt factor which
is assumed to be 1.0 throughout our work wherever radiative cooling is used.
Now we will discuss how this cooling law is implemented. In each time step of
the simulation two different types of coolings are used depending on the optical
depth of the region. We begin with the power-law type cooling given in eq. 2.69
where β is chosen to 0.6 (as in Molteni, Sponholz & Chakrabarti, 1996) and at each
time step optical depth is computed,

τ =
∫

N(r, z)σTdz, (2-67)

where, σT is Thompson scattering cross section, along the vertical direction from
upper and lower grid boundary up to the equatorial plane. As soon as a Kep-
lerian disk starts forming near the equatorial region optical depth of that region
abruptly increases forming a surface of the Keplerian disc. In case of optically
thick Keplerian disc, the energy is assumed to be radiated from the surface in the
form of black body (Giri, Garain, Chakrabarti 2015) radiation whose cooling rate
is given as,

Λbb = σT4(r, z) erg cm−2 s−1, (2-68)

where, σ is Stefan-Boltzmann constant given by σ = 5.67× 10−5 erg cm−2 deg−4 s−1.
In the regions below the surface of the Keplerian disc, no separate cooling is nec-
essary as the energy produced inside the disc is either radiated as black body
from the surface or get advected.

2.6 Magnetized inviscid flow

As discussed in the previous chapter, the magnetic activity at the base of the jet
region plays a major role in understanding many physical problems such as colli-
mation and acceleration of jets, microvariability in blazars and BL Lac objects etc.
As far as the source of the magnetic field is concerned they are steadily supplied
with the inflow from the companion. Far away from the black hole, magnetic
fields may have all the components but as soon as it gets acreted with the mat-
ter, due to large azimuthal velocity of the flow only toroidal component of the
field becomes dominant and thus generate toroidal flux tubes. There is another
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school of belief that magnetic field may also be generated from some seed field
using dynamo mechanism inside the disc (Eardley & Lightman 1975; Galeev et
al., 1979; Parker, 1979; Soward, 1978; Meyer & Meyer-Hofmeister, 1982; Pudritz,
1981; Stepinski & Levy, 1988, 1990; Vishniac, Jin & Diamond, 1990; Campbell,
1990; Tout & Pringle 1992 etc.) and also magnetic field can be generated ab ini-
tio by Biermann battery effect (Biermann, 1950) as inside a proto galactic tori
(Chakrabarti, 1991, Chakrabarti, Rosner & Vainshtein 1994). The advantage of
using toroidal magnetic flux tubes is that since it is a closed loop, it will always be
divergence free. In an advective disc, the magnetic blob accreted from the com-
panion will be stretched due to differential rotation into mostly azimuthal and
opposite directed fields and the turbulent eddies present in the disc may push
and reconnect creating more magnetic blobs. Hence the number of magnetic flux
tubes will rise. However, a single thick flux tube may also be split into several
axisymmetric flux tubes in presence of shear. Detailed analysis of this would
require study of turbulences but since the chosen grid size of our simulation is
much higher than the size of the turbulence cells it was not possible. In the next
sub-section we will discuss the equation of motion of a single isolated flux tube
in an advective disc and its effect on the source term we discussed earlier in this
Chapter.

2.6.1 Modified Source term

The source function is

S =



0

ρv2
θ

r −
ρr

2(
√

r2+z2−1)
2√

r2+z2
− fmag,r

− ρvrvθ
r

− ρz

2(
√

r2+z2−1)
2√

r2+z2
+ fmag,z

− ρ(rvr+zvz)

2(
√

r2+z2−1)
2√

r2+z2



. (2-69)



Chapter 2. 39

Here we have only sub-Keplerian matter advected towards the black hole. Thus
the accretion rate is only for sub-Keplerian halo that is advected towards the com-
pact object, not of the conventional Keplerian disk. In order to include the effect
of magnetic field the source function is changed but magnetic field is not perme-
ated everywhere in the flow. It is only restricted to the flux tubes whose dynamics
we are studying. Thus the Lorentz force is operative only due to them. The source
function S has two terms fmag,r and fmag,z which are r and z components of the
Lorentz force due to the presence of toroidal magnetic field. The expression for
the Lorentz force is given as,

fmag =
ρ

(melectron + mproton)

e
c
(v× B). (2-70)

2.6.2 Equation of Motion

Parker (1955) in his pathbreaking work demonstrated how magnetic buoyancy
plays a major role in various magnetic activities in sun, such as how magnetic flux
tubes generated at the solar interior comes out due to magnetic buoyancy even-
tually producing solar corona. In case of advective accretion discs around black
holes the scenario is quite different as it is believed that flux tubes are accreted
along with the matter from the companion only, instead of being produced inside
the disc like the sun. The effect of differential rotation is also very pronounced
in case of an accretion disc. In the literature there exists a significant amount of
work regarding the stability, dynamics of magnetic flux tubes and their different
aspects and effects on astrophysical jets (e.g., Shibata & Uchida (1985), Shibata &
Uchida (1986), Ferriz-Mas et al. (1989), Moreno-Insertis et al. (1992), You et al.
(2005), Longcope & Klapper (1997), Blackman (1996), Fendt & Camenzind (1996),
Chakrabarti & D’silva 1994a, D’Silva & Chakrabarti 1994b). We assumed that the
flux tube we are considering is azimuthally symmetric and also we employ thin
flux tube approximation which enables us to consider that the variation of dif-
ferent physical quantities inside the flux tube is negligible. This approximation
holds if the cross sectional radius of the flux tube is smaller compared to the lo-
cal pressure scale height of the disc. The equations of motion for the thin flux
tubes have been written by several authors in the context of solar physics as well
as thick disc around a black hole (Choudhuri & Gilman 1987, CD94). Here, fol-
lowing CD94, the equations of motion for thin axisymmetric flux tube are given
as,
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ξ̈ − ξθ̇ +
X

(1 + X)
[−ξφ̇2 sin2 θ − 2ξωφ̇ sin2 θ] =

X
(1 + X)

{
M
X
[g− ξω2 sin2 θ]− Tens sin θ − Dr

πσ2ρe

}
,

(2-71)

ξθ̈ + 2ξ̇ θ̇ +
X

(1 + X)
[−ξφ̇2 sin θ cos θ − 2ξωφ̇ sin θ cos θ] =

− X
(1 + X)

{
M
X

ξω2 sin θ cos θ + Tens cos θ +
Dθ

πσ2ρe

}
,

(2-72)

ξ sin θφ̈ + 2ξ̇ sin θ(φ̇ + ω) + 2ξ cos θθ̇(φ̇ + ω) + ξ sin θ{
ξ̇

∂ω

∂r
+ θ̇

∂ω

∂θ

}
= 0,

(2-73)

where, (ξ, θ, φ) is the position of a point inside a flux ring having magnetic field
B. Here, ξ is measure of radial distance in the unit of Scwarzschild radius (rg).
Here, X is defined as X = mi/me where, mi = ρiπσ2 · 2πr sin θ is the mass of the
flow inside the flux tube of radius of cross section (in the meridional plane) σ and
me = ρeπσ2 · 2πr sin θ is the mass of the external flow displaced by the flux tube.
The flux ψ = Bπσ2 through the ring remains constant. The flux tube experiences
buoyancy and the buoyancy factor is given by,

M =
ρe − ρi

ρe
=

me −mi

me

where ρe and ρi represent external and internal densities respectively. The effec-
tive acceleration due to gravity is,

ge f f = (g− ξω2 sin2 θ)ξ̂ − ξω2 sin θ cos θθ̂ (2-74)

where, g is given as g = 1/2(ξ − 1)2 in Schwarzschild unit. The drag force per
unit length is given as,

D = −0.5CDρeσ|(ξ̇ − v)ξ̂ + ξθ̇θ̂|(ξ̇ − v)ξ̂ + ξθ̇θ̂ (2-75)

where, CD = 0.4 is a dimensionless coefficient that has constant value of 0.4 for
high Reynold’s number (Goldstein, 1938). It is often said that a magnetic field
line is like a rubber band. Just as a stretched band returns to its original size
when released, a closed magnetic flux tube also has a tension which is often the
most important force component. The tension force is given by

Tens =
4πM0Te(ξ0)

µe A(1−M0)ξ0 sin θ0
(2-76)
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which is a dimensionless measure of the magnetic tension (CD94) where, Te(ξ0)

is the initial temperature of the external fluid, (ξ0, θ0) is the initial position of the
flux tube, A is area increment factor given as A = (σ/σ0)

2 where σ0 is the initial
cross sectional radius and σ is the instantaneous radius, and M0 is the initial
buoyancy factor, which is calculated to be M0 = B2/8πpg,e where, pg,e is external
gas pressure. As A(t) = σ2(t)/σ2

0 , this gives the evolution of the flux tubes over
the course of the simulation. Explicit form of this area expansion factor is given
as (CD94),

A =

(
Te(ξ0, θ0)

Te(ξ, θ)

)3(
ξ0 sin θ0

ξ sin θ

)(
1−M0

1−M

)
(2-77)

where, Te(ξ, θ) is directly coming from our simulation at each instant of time.

2.6.3 Adiabatic picture and Calculation of Magnetic Buoyancy:

The magnetic buoyancy factor (M) strictly depends on the nature of the energy
transfer between disc and the flux tube and also on the initial entropy condition
of the flux tube. There can be two way how the energy transfer between disc
and flux tube happens, first one is by isothermal procedure and second one is
according to adiabatic procedure though in realistic case the actual process lies
between these two extremes. Here, we have considered that the flux tube moves
adiabatically with the surrounding fluid i.e., there is no heat exchange between
them. The entropy inside the flux tube remains constant throughout the dynam-
ics of the flux ring. Hence, unlike the isothermal condition the radiation pressure
inside the tube is not equal to the radiation pressure of surrounding fluid. Thus,
using the fact that the flux tube is in pressure equilibrium with the surroundings
we have,

pr,i + pg,i +
B2

8π
= pr,e + pg,e, (2-78)

where, pr,i and pr,e are radiation pressure for internal and external fluid and pg,i
and pg,e are gas pressure for internal and external fluid. The ratio of gas pressure
(pg) to total pressure (pr + pg) is denoted by a constant β. From eq.2.81, using the
assumption that the flux tube is in thermal equilibrium with the surrounding just
prior to its release, we get,

B
ρiξ sin θ

= constant (2-79)
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Since the flux tube moves adiabatically, we have,

pi

pi0
=

(
ρi

ρi0

)γ

(2-80)

pe

pe0
=

(
ρe

ρe0

)γ

(2-81)

Ti

Ti0
=

(
ρi

ρi0

)γ−1

(2-82)

Te

Te0
=

(
ρe

ρe0

)γ−1

(2-83)

where, p and T represents pressure and temperature respectively and the sub-
scripts i, e, & 0 represents flow inside the tube, external flow, and initial values
of the physical quantities respectively. After rearranging and then dividing eq.
2.81 by pg,e we get,

1− β

β

(
1− pr,i

pr,e

)
+ 1−

pg,i

pg,e
=

B2

8πpg,e
(2-84)

putting pr =
1
3 aT4 and using the fact that Ti0 = Te0 in Eq. 2.87 we get,

1− β

β

(
1− (Ti/Ti0)

4

(Te/Te0)4

)
+ 1−

(pg,i/pi0)

(pg,e/pe0)

pi0

pe0
=

B2

8πpg,e
(2-85)

Using eq. 2.82 - 2.86 into eq. 2.87 we get an expression for ρi/ρe,

k1

(
ρi

ρe

)4/3

+ k2

(
ρi

ρe

)2

− 1 = 0, (2-86)

where,

k1 =
(1− βeM0)

(1−M0)4/3 ,

k2 = βe
M0

(1−M0)2

(
Te

Te,0

)2(
ξ sin θ

ξ0 sin θ0

)2

.

By solving this equation we get ρi/ρe and hence the magnetic buoyancy (M) and
using eq. 2.80 we can eventually calculate the area expansion factor which gives
us the cross sectional radius and magnetic field value at each time step.



Chapter 3

Simulation setup & Testing

A realistic accretion disc is non-axisymmetric, three dimensional and time depen-
dent with many complex features embedded into it. It has viscous dissipation,
radiative cooling and magnetic fields, each of which play different roles helping
us to explain different observed phenomena. It is wise to start with the most
simple setup, such as the spherical symmetric flow and slowly build up on that
adding new features. In most of these cases, it is useful to assume the flow to be
axisymmetric so that one can study its behavior on the r− z plane of cylindrical
co-ordinate system. This flow is essentially two dimensional. We first consider a
spherical symmetric flow and then add magnetic field to it. As the next step we
add angular momentum ignoring the viscous and radiative cooling part to make
the flow inviscid. We study non magnetized and magnetized cases of the invis-
cid flow. Lastly we add viscosity and radiative cooling to investigate further. In
this chapter, we shall discuss how we gradually set up the problem starting with
spherical symmetric flow and discuss the assumptions and way the boundary
condition is implemented.

3.1 Simulation Setup

Our simulations consist of two parts. In the first part, we solve the hydrody-
namic equations for both inviscid and viscous systems and in the second part,
we couple the hydrodynamics of the flow with the equations describing dynam-
ics of magnetic flux tubes. All the necessary equations and the changes made
to the hydrodynamics are already discussed in 2. We use injection methods and
boundary condition same as Giri et al. (2010) and Giri & Chakrabarti (2014) but
with some changes which will be discussed in the subsequent sections here. We
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Figure 3.1: A schematic diagram of the system under consideration. Solid box is
our computational region on the r − z plane. No reflection symmetry along the
equatorial plane has been assumed.

use Total Variation Diminishing scheme (Harten, 1983) for solving the hydrody-
namical equations and for dynamics of the magnetic flux tubes we have used a
fourth order Runge-Kutta scheme for second order system of coupled ordinary
differential equations (ODE) all of which have been discussed in 2.

3.1.1 Geometry of the System:

For our simulation we consider that matter accreted from the companion is flow-
ing towards the black hole axisymmetrically in the pseudo-Newtonian gravita-
tional field of the central compact object. A black hole of mass Mbh is assumed to
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be at the origin of the chosen co-ordinate system. Here, we have chosen a cylin-
drical co-ordinate system (r, θ, z). We assume the pressure of the gas at infinity
to be very low and specific energy to be zero. The gravitational field is chosen to
be a Paczyński-Wiita type potential (Paczyński & Wiita, 1980). For simplicity we
have constrained ourselves only to first and fourth quadrant of the r− z plane of
cylindrical co-ordinate system. The flow behavior can be generated in other two
quadrants using reflection symmetry along z axis. Unlike Giri et al. (2010) and
Giri & Chakrabarti (2012, 2014) we do not use any reflection boundary condition
along r axis. The magnetic flux tube is symmetric about the axis of rotation of the
disc and has only the azimuthal component of the field. To write the equations
of motion for the magnetic flux tube which dictates its dynamics we have used
spherical co-ordinate system. Hence, the position of slender flux tube is denoted
by (r, θ, φ). Since our system is two dimensional for a given θ (co-ordinate sys-
tem of hydrodynamic code which is cylindrical) we can only see a cross section
of the flux tubes.

3.1.2 Computational Box and Initial Conditions

The computational box occupies two quadrants of the r − z plane of the cylin-
drical co-ordinate system. The size of this computational box is 0 ≤ r ≤ rout

in r direction and in z direction it spans as −zout ≤ z ≤ zout. Here, rout is the
outer boundary and zout and −zout denotes the upper and lower boundary of
the computational box respectively. Since, we are using finite difference method
our system is grid based. If we have Nr number of grids in r direction and Nz

number grids in z direction the grid sizes in r and z direction are ∆r = rout
Nr

and
∆z = 2zout

Nz
respectively. In order to mimic the horizon (r = 1 rg) we place an

absorbing boundary at a region called inner boundary and in our simulation this
inner boundary varies from 1.1 rg to 2.5 rg. Initially, before injecting any matter
into the computational grid we fill the box with a stationary gas with a very low
density (ρbg = 10−6). This is done to avoid any singularities till the grid is filled
with actual matter. The injected matter is assumed to have a density ρin = 1
at the equatorial region and the density of matter at other grid points is scaled
with respect to that. The initial low density matter will obviously be washed out
by the incoming matter within a dynamical timescale. Since initial low density
gas inside the computational box is stationary, only matter injected at the outer
boundary will have non-zero velocity components and so the Mach number will
also be non-zero at the outer boundary (rout). In order to simulate the magnetized
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flow, the initial conditions for the hydrodynamic part remains the same but a new
set of initial conditions and parameters are introduced. Initially it is assumed that
at the time of injection at the outer boundary the magnetic flux tube is stationary
i.e., the initial velocity components (ṙ, θ̇, φ̇) of the flux tube are zero. In order
to initiate the magnetized simulation we need an initial value of magnetic field
intensity (0, 0, Bφ) and initial magnetic buoyancy factor which can be found us-
ing the ratio between magnetic pressure and external gas pressure. We also need
to supply the initial cross sectional radius of the flux tube and since drag force
acting on the flux tube depends on the cross sectional radius of the flux tube, this
parameter will have a major effect on the dynamics of the flux tube.

3.1.3 Boundary conditions

A simple outflow boundary condition is employed where the gradient of all the
physical quantities are set to zero at the boundary in both the quadrants. We
have not implemented any reflecting boundary condition along the r axis and re-
flecting boundary is set along the z axis for both the quadrants. By revoking the
reflection boundary condition from the r axis we allowed the vertical oscillation
of the shock front along with the horizontal oscillations. However, the flow re-
mains axisymmetric as a reflecting boundary is invoked along the z axis. At the
outer boundary, r = rout, along the z boundary, matter is injected with supersonic
velocity. We use the fact that the total energy of the injected flow is conserved at
the boundary points for a given angular momentum. Thus we have the expres-
sion,

ε =
vr

2

2
+ na2 +

λ2

2r2 + Φ(R) (3-1)

where, n is the polytropic index, λ is the angular momentum and Φ is the pseudo-
Newtonian gravitational potential given as,

Φ(R) = − 1
2(R− 1)

where, R =
√

r2 + z2 for cylindrical co ordinate system and a is the sound speed.
Now, if the flow is in hydrostatic equilibrium in the z- direction we get the height
of the disc as a function of radial distance which is given as,

z(r) = ar
1
2 (r− 1)

and we can compute the sound speed (a) from this expression for a given r and z.
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3.1.4 Comment on the Code Units

In our simulation the physical quantities are written in dimensionless manner.
To achieve this, we have considered, 2G = M = c = 1 where, M is solar mass,
G is gravitational constant and c is velocity of light. Thus the units for mass
becomes M�, for length becomes 2GMbh

c2 , for velocity becomes c and for time be-
comes 2GMbh

c3 . The mass accretion rate is measured in the unit of mass Eddington
rate given as LEdd

c2 where LEdd = 1.2× 1038Mbh. For our simulation purpose we
consider only stellar mass black hole of 10 M� but the result will remain equally
valid for supermassive black holes as well. Only time and length scales will vary
as they involve mass of the central object. Simulations are run for several thou-
sands of dynamical time which in reality corresponds to few seconds of physical
time.

3.2 Testing of the Code: non-magnetized and Magnetized:

In order to validate the code both magnetized and non-magnetized (without re-
flection symmetry along r axis) we must choose a known analytical solution of
a test model and try to see whether it will match with the simulation of same
model. So, for this purpose we chose a test case where a stationary gas cloud of
low density and zero angular momentum sitting at the infinity will fall towards a
central object spherically and try to match the simulation results with the analyt-
ical one. This spherical flow of gas is known as Bondi flow. We use the analytical
solution of this flow at the outer boundary and inject the matter accordingly.

3.2.1 spherical flow without reflection symmetry

Bondi flow is a spherical flow of a gas falling towards a point mass due to New-
tonian gravity (Bondi, 1950). In order to simulate a two dimensional Bondi like
spherical flow, we have chosen a computational box of dimension 0 ≤ r ≤ 200 rg

in r direction and −200 rg ≤ z ≤ 200 rg in z direction. The outer boundary is
placed at rout = 200 rg. Since, we will use a finite difference code we have to de-
fine proper grid size. For this purpose, we have considered the number of grids
in r-direction to be Nr = 512 and in z-direction to be Nz = 1024 and thus the
grid size in both the directions is 0.39 rg. We choose the units used in the code in
such a way that the outer boundary (rout) becomes unity and also the density gets
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normalized to unity at the equatorial plane. The central object is a Schwarzschild
stellar mass black hole of mass Mbh = 10M�. The gravitational potential is con-
sidered to be a Pseudo-Newtonian gravitational potential (Paczyński & Wiita,
1980) which is given as Φg = 1

2(R−1) written in units of rg. Calculations of the
units of other physical quantities are done according the process shown in pre-
vious section. As previously discussed we have to specify radial velocity and
sound speed at the outer boundary and the matter is injected with that veloc-
ities. In this case, the velocities are calculated using analytical Bondi solution.
Now, since Bondi flow is a spherically symmetric flow, matter has to be injected
from all the boundaries not only outer z boundary but both upper and lower
r boundaries as well. The other boundary conditions are same as described in
the previous section. We run the simulation for several hundred dynamical time
scale until the steady state is achieved and then we compare our simulation re-
sults with the analytical solution. In Fig. 3.2 we have plotted the spatial variation
of density and velocity vectors. Form the figure it is evident that the density and
velocity of the gas increases as it approaches towards the black hole. These are
basically snapshots of our hydrodynamical simulation once it reached the steady
state. From the density plot we see the spherical nature of the flow. In fig 3.3
we compare our simulation result with analytical 1-dimensional Bondi solution.
In panels labelled (a) and (c) we have plotted the radial velocity and Mach num-
ber distribution respectively obtained from the hydrodynamic simulation and in
panels (b) and (d) we have plotted the radial velocity and Mach number distribu-
tion obtained from the analytical solution. It is evident that the simulation result
matches with that of the analytical result.

3.2.2 Magnetized Spherical Flow

In order to test the magnetized code we considered the same spherical Bondi
flow just with a minute change i.e., a toroidal magnetic field is released at the
outer boundary. Hence the numerical procedure and the simulation setup for the
hydrodynamics discussed above in the previous sections remains same. We just
change the source function in the manner already described in the section 2.6.1
which makes the flow magnetized. We choose the initial parameters for which we
need to solve the dynamics of the flux tube. We consider the initial cross sectional
radius for the flux tube to be 0.001 rg and the initial magnetic buoyancy factor is
chosen to be very small 0.01. After running the simulation for a sufficiently long
time to obtain a steady value we have injected the flux tube and have observed
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Figure 3.2: Density colour plot and velocity vector plot of a spherical Bondi flow
for non-magnetized case. No reflection symmetry along the equatorial plane has
been assumed.
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Figure 3.3: Comparison between radial velocity and Mach number plot obtained
from hydrodynamic simulation and analytical solution respectively. Plots in
panel (a) and (c) are from simulation and plots in panel (b) and (d) are drawn
using analytical solution.



Chapter 3. 51

Figure 3.4: Density colour plot and velocity vector plot of a spherical Bondi flow
for magtized case. No reflection symmetry along the equatorial plane has been
assumed.

that the flow remains spherical (see 3.4) as we have seen in the previous section.
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Non Magnetized Inviscid Flow

Various research groups (e.g., Hawley, Wilson & Smarr 1984; Eggum, Coroniti, &
Katz 1985; Chakrabarti & Molteni, 1993; MLC94; Ryu, Brown, Ostriker & Loeb
1995; Molteni, Sponholz & Chakrabarti 1996; Molteni, Ryu & Chakrabarti, 1996,
hereafter, MRC96; Ryu, Molteni & Chakrabarti, 1997, hereafter RMC97; Igumen-
shchev, Abramowicz & Narayan 2000; Chakrabarti, Acharya & Molteni, 2001,
hereafter CAM01; Giri et al., 2010, hereafter GC10) presented a large number of
numerical simulations of inviscid accretion flows around black holes. These sim-
ulations invoked standard reflection boundary condition on the equatorial plane
with the assumption that the flow has an equatorial symmetry and therefore the
flow behavior was studied only on one quadrant i.e., first quadrant. In MLC94
and GC10, the results of standing and oscillating shock formations in inviscid
flows are presented using Smoothed Particle Hydrodynamics (SPH) method and
finite difference method respectively. In GC10, simulations were carried out us-
ing two conserved quantities, namely, specific energy E and specific angular mo-
mentum λ as flow parameters chosen from the parameter space that provides the
complete set of black hole accretion flow solution (Chakrabarti 1989; hereafter
C89). Also, several simulations have been carried out without using any reflec-
tion symmetry along the equatorial plane by various groups for both black hole
accretion (Molteni et al., 2001, hereafter M01; Chakrabarti, Acharya & Molteni,
hereafter CAM01) as well as wind accretion onto stars (Fryxell & Taam, 1988;
Taam & Fryxell, 1989; Matsuda et al., 1991, 1992). In M01 and CAM01, utilizing
SPH, it was demonstrated that an instability can happen in the stream. They like-
wise showed that albeit matter being injected symmetrically, those instabilities
may not remain symmetric with respect to the central plane. Moreover, incoming
flow interacts strongly with the outgoing wind resulting in an instability in the
flow (M01). SPH is known to be dissipative in nature and it is not inconceivable
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that in energy conserving schemes one may see that such oscillations are really
disrupting the matter flow. We, therefore, in this chapter extend the work of
GC10 where energy is accurately preserved by removing the reflection condition
along the equatorial plane and while doing so we intend to give answers to the
following important questions in the subsequent sections: (a) Will the accretion
flow be symmetric with respect to the equatorial plane? And if so, under what
conditions? (b) Will this two quadrant flow have any effect on the formation
of the so called ‘CENBOL’? This question is especially relevant as the CENBOL
acts as the Compton cloud (Chakrabarti 1995, Chakrabarti 1997, Chakrabarti &
Titarchuk 1995) while explaining the spectral and timing properties of black hole
candidates. (c) If the flow symmetry is absent then will the accretion flow remain
stable at all or the flow would be violent and disrupted? (d) What will be its
effects on outflows which are known to be produced on the CENBOL surface?

4.1 Simulation set up and procedure

The computational box consists of two quadrants (first and fourth quadrant) as
described in previous chapter. Here, we utilize the reflection symmetry condition
just on the z-axis to realize the assumption that the flow around the black hole is
axisymmetric in nature and hence obtain the solution in other quadrants. The
inner boundary condition is required to constrain the flow to be axisymmetric
near the black hole. The incoming gas enters the computational box symmetri-
cally with respect to the equatorial plane through the outer boundary situated
at rb = 200 rg. We inject the matter with radial velocity vr, the sound speed a
(i.e., temperature) at the boundary computed using the hybrid model and the
boundary values of density ρ are supplied from the standard vertical equilibrium
solution (C89). We scale the density so that the injected gas has the density of
ρin = 1.0 at the equatorial plane. With a specific idea to emulate the horizon
of the black hole, we put an absorbing inner boundary condition at R = 2.5rg,
inside which all the approaching matter is absorbed totally into the black hole.
The inner sonic point is formed around this radius anyway, thus this decision of
placement of the inner boundary does not influence the flow elements. In order
to avoid any occurrence of singularities due to ‘division by zero’, we fill the grid
with an initial matter of low density ρbg = 10−6 having a sound speed (or, tem-
perature) to be the same as that of the injected matter. Henceforth, the incoming
matter has a pressure 106 times greater than that of the initial background matter.
Obviously, this background matter is completely washed out and supplanted by
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the injected matter within a dynamical time scale.

Initially, the low-density matter with which the computational grids are filled
in is assumed to be static, i.e., the radial (vr), rotational (vφ) and azimuthal (vz) ve-
locity components are zero for all the grids apart from those on the outer bound-
ary. Hence, the Mach number is zero everywhere with the exception of the outer
boundary at the beginning of the simulation. The simulations were performed
with a high resolution of 512× 1024 grid points. Therefore, every r and z-grid has
a size of 0.3906 in units of the Schwarzschild radius. Figure 3.1 indicates schemat-
ically our framework on the r − z plane in the cylindrical coordinate system. In
this chapter, we wish to investigate the stability of CENBOL and unsteadiness in
the accretion disc around a black hole. All the simulation cases were done assum-
ing a stellar mass black of mass MBH = 10M�. The conversion of the simulation’s
time unit to the physical unit is 2GMBH/c3, and accordingly, the physical time
for which the program was run would scale with the mass of the black hole. We
generally find that the infall time from the outer to the inner boundary is about
∼ 0.5s. This is calculated by summing dr/ < vr > over the whole radial grid,
< vr > being averaged over 20 vertical grids. We carry out the simulations over
a few dynamical time-scales after any transient effects which may occur at the
beginning.

4.2 Instability due to breaking of the reflection symmetry

In the earlier simulations (GC10, MLC01), the objective was to check whether the
shocks could be created at the theoretically perdicted positions, and if so, how
does the puffed up post-shock region behave in reference to the thick accretion
flow. In this section, we shall check whether the CENBOL truly stays symmetric
with respect to the equatorial plane if we remove the reflection symmetry that
was imposed on earlier simulations.

4.2.1 Formation and deformation of CENBOL

In GC10 all the simulations were carried out under the assumption that the flow
is symmetric with respect to the equatorial plane and hence injection of mat-
ter was done just in one quadrant. M01, in their work involving cooling pro-
cesses, has demonstrated that some instabilities got introduced in the accretion
disc even in SPH simulations where angular momentum is conserved well (see,
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Figure 4.1: Density and velocity vector map to show quasi-periodic formation
and deformation of the CENBOL at (a) t = 21.36 s, (b) 21.84 s, (c) 22.08 s and (d)
24.95 s. Specific angular momentum is considered to be λ = 1.6. In (a), high den-
sity region due to centrifugal supported boundary layer (CENBOL) has a sym-
metric shape. In (b), symmetry is about to be broken due to vertical oscillation of
the perturbing mass. In (c), CENBOL is deformed but not destroyed. In (d), the
CENBOL is restored back (Deb, Giri, Chakrabarti, 2016).
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(a)

(b)

Figure 4.2: Radial distribution of the (a) radial velocity component and (b) radial
Mach number (vr/a) on the equatorial plane. Time is t = 24.95 s and specific
angular momentum is λ = 1.6. We clearly see the slowing down of matter at
the centrifugal barrier (a) and a supersonic to sub-sonic transition (b) forming a
shock (Deb, Giri, Chakrabarti, 2016).
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MRC96, RCM97). Chakrabarti et al. (2004) have demonstrated that the quasi-
periodic variabilities are caused because of vertical as well as horizontal oscilla-
tion of shock waves in a two dimensional axisymmetric flow utilizing Smooth
Particle Hydrodynamics (SPH). The results of the numerical simulations shown
in this Chapter are obtained utilizing a code based on Total Variation Diminishing
(TVD) scheme. Following C89, we inject matter at the outer boundary maintain-
ing the vertical equilibrium. The injection rate of the momentum density is kept
uniform all through the injected height (in this case, height of the total computa-
tional box) at the outer boundary. We stop the simulations at t = 95s (physical
time). This time is more than two hundred times the dynamical time of the flow.
The solutions shown in Fig. 4.1(a-d) are at 45-50 times the dynamical time, long
after the transient effects (∼ 1s) vanish. In this manner, the effects seen are gen-
uine and can be relied to study the spectral properties. C89 anticipated that the
standing shocks can form if λ > 1.525. We find that, indeed, CENBOL is formed
whenever λ > 1.5, the ’discrepancy’ could be because of the presence of turbu-
lence pressure (produced by the interaction between the fluid bounced off the
CENBOL and the incoming fluid in the post-shock region.) which enables the
development of CENBOL to even at a lower angular momentum. In Fig. 4.2,
we demonstrate the distribution of radial velocity and the Mach number which
is the ratio between the radial velocity (< vr >) and sound speed (< a >). The
radial velocity and the sound speed are averaged over 10 grid points situated on
either side of the equatorial plane. The plot is drawn for t ∼ 24.95 s. The radial
velocity abruptly drops at the shock location where the flow becomes subsonic as
confirmed by the Mach number distribution. As the time advances, the shock is
found to oscillate radially and vertically.

4.2.2 High angular momentum case

We repeat the simulation with a larger specific angular momentum. We use λ =

1.7. The centrifugal force increases moving the location of the shock further out
and in this way the CENBOL is expanded. However, it can be observed that when
the transient phase is passed, the CENBOL participates in a vertical oscillation
around the equatorial plane. We additionally see that the outflowing wind is
interacting with the approaching accreting matter making a weaker oblique shock
close to the upper right and lower right corners. In Fig. 4.3(a-d), we plot the
density and velocity vector maps of the fluid flow at t = 17.34 s, 22.57 s, 39.13
s, and 43.23 s respectively. The CENBOL takes a complex shape. It is also clear
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Figure 4.3: Density and velocity vector plots of the accretion flow to show insta-
bility within the flow. (a) and (c) show that the CENBOL is shifted above: flow
density is higher in the upper quadrant and (b) and (d) show that the CENBOL
is shifted below: flow density is higher in the lower quadrant. Plots are drawn at
t = 17.34, 22.57, 40.08, and 43.2 seconds respectively. Specific angular momentum
is considered to be λ = 1.7 (Deb, Giri, Chakrabarti, 2016).
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that the outflows oscillate, i.e., there are times when the outflow from the upper
quadrant is very high. At some other times the outflow in the lower quadrant
is substantial. The discs in Fig. 4.3(a) and Fig. 4.3(c) have the CENBOL moved
marginally to upper quadrant and the outflow rate from the upper boundary is
observed to be bigger. Nonetheless, discs in Fig. 4.3(b) and Fig. 4.3(d) have
the CENBOL moved marginally towards the lower quadrant and the outflow is
observed to be bigger. In the present setting, we note that the disc instability is
higher when the specific angular momentum is increased.

Two important physical processes are triggered by the angular momentum:
(i) infalling matter hits the centrifugal barrier (characterized by the region where
the outward centrifugal force matches with the inward gravitational force) and
reflects back close to the equatorial plane. This flow goes against the infalling
matter and two turbulence cells of opposite vorticities are created, one above and
the other beneath the central plane. (ii) Centrifugal pressure driven winds are
formed which also flow outwards (sandwiched between the centrifugal barrier
and the supposed funnel wall, for more details see, Molteni et al. 1996b), con-
fronting the incoming flow away from the equatorial plane. This interface is thus
vulnerable to Kelvin-Helmholtz instability. In every one of the cases of the simu-
lations we performed, we found that for low angular momentum, the wind does
not form at all and hence this instability is missing. Higher the angular momen-
tum, stronger is the shear instability between the incoming and outgoing compo-
nents. At the point when the amplitude of the fastest growing mode approaches
toward becoming non-linear, instabilities in the upper and lower parts join and
push the whole disc on one side or the other. This could be the reason for the
vertical motion. This requires further study.

The simulations we did are inviscid in nature and therefore the flow motion
exhibited violence when angular momentum is increased because the later is not
transported away due to absence of viscosity. Likewise, we have excluded radia-
tive cooling, on account of which, the fluid is extremely hot inside CENBOL. It
has already been proposed that the shock oscillations could explain quasi peri-
odic oscillations (QPOs) observed in black hole candidates.

4.3 Effect on the inflow-outflow ratio

In Fig. 4.4, we plot the ratio of the outflow rate to steady injected rate. The
dot-dashed curve represents the ratio of the net outflow rate (Ṁout) and the net
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(a) (b)

Figure 4.4: Time variation of the ratio between the total outflow rate (Ṁout) and
the total inflow rate (Ṁin) showing an anti-correlated behavior. When the outflow
rate from the upper boundary is high, the outflow rate in the lower boundary is
low and vice versa. Here (a) λ = 1.7 and (b) λ = 1.8. Dot-dashed curve represents
the outflow inflow rate ratio in upper quadrant, solid curve represents the ratio
in lower quadrant, and dashed curve represents the mean value (time averaged)
of the outflow inflow rate ratio. We note that the mean outflow rate as well as the
degree of deviation from the mean is higher when angular momentum is higher
(Deb, Giri, Chakrabarti, 2016).
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Figure 4.5: Plot of cross correlation between total outflow rates from upper and
lower quadrant to show the anti-correlated behavior of the outflow. Fig 4.5(a) is
drawn for λ = 1.7 and 4.5(b) is drawn for λ = 1.8 (Deb, Giri, Chakrabarti, 2016).

inflow rate (Ṁin) in the upper quadrant, solid curve denotes the same ratio in
lower quadrant, and dashed curve shows the mean value (time averaged) of the
ratio. In Fig. 4.4(a) and Fig. 4.4(b), we choose λ = 1.7 and 1.8 respectively.
We take note of that outflow rate and the mean rate increase with the increment
of specific angular momentum. This further strengthen the argument that the
outflow is driven by the centrifugal barrier. The overall rate is observed to be
about 5− 10% of the inflow rate. We additionally note that the deviation from
the mean increases as well, showing that for higher λ, stronger vertical oscillation
sets in. This was likewise found in the density and velocity plots. The plots 4.4(a)
and 4.4(b) demonstrate anti-correlated behavior between the outflow rates from
the upper and the lower boundary and this conclusion is corroborated by figs.
4.5(a-b) where we have plotted the cross correlation coefficients.

4.4 Time Variation of Shock Location

We continue further investigation into the accretion flow for both low and high
specific angular momentum case by looking into the time variation of shock loca-
tion. Here, the specific angular momentum we have chosen are λ = 1.6, 1.7, & 1.8.
In figs. 4.6(i)-4.8(i) we have plotted the time variation of the shock location. In
those plots, the panels marked with (a) and (b) in group (i) depicts the shock lo-
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(a) (i) (b) (ii)

Figure 4.6: Time variation of shock location for two quadrant flow with λ = 1.6
angular momentum and their respective power density spectra. Group (i) shows
the shock location variation in upper (a) and lower (b) quadrants. Group (ii)
shows the power density spectra (PDS) of these locations. We see evidence of a
prominent peak at ∼ 0.16Hz in both the cases and a harmonics at ∼ 0.32Hz.

cation variation in upper and lower quadrant respectively. From these plots it is
evident that, since for lower angular momentum case CENBOL is formed with
a distinct shape (with repeated formation and deformation of the CENBOL) and
the flow is less turbulent as compared to the higher angular momentum case, the
time variation of shock location for the low angular momentum case has some
periodicity in it. But as the angular momentum is increased, the flow becomes
more and more violent and the CENBOL tends to take a very complex shape, the
time variation of the shock location becomes more chaotic and from the Figures
it can be concluded that as the λ increases, the shock tends to oscillate around a
larger mean value.

Figures 4.6(ii)-4.8(ii) depict the power density spectrum (PDS) of the time vari-
ation of the shock location. In panels (a) and (b) PDS of the upper and low quad-
rant shock locations are shown. For low angular momentum case λ = 1.6, the
power density spectrum has two distinct peaks at∼ 0.16Hz in both the cases and
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(a) (i) (b) (ii)

Figure 4.7: Same as in Fig. 4.6 for λ = 1.7. Note that the shock oscillates around a
larger mean location, though the symmetry in upper and lower quadrant is lost.
The power density spectra have several peaks and the oscillation is more chaotic.
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(a) (i) (b) (ii)

Figure 4.8: Same as in Fig. 4.6 for λ = 1.8. Note that the shock oscillates around a
mean location similar to what we observed for λ = 1.7, perhaps due to the post-
shock turbulence. The symmetry in upper and lower quadrant is lost. The power
density spectra have several peaks and the oscillation is more chaotic.
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a harmonics at∼ 0.32Hz but as the angular momentum is increased to 1.7 and 1.8
the PDS of the shock locations has several peaks as the oscillation becomes more
and more chaotic.

In the present chapter, we studied whether the CENBOL truly stays symmet-
ric with respect to the equatorial plane. For this, we removed the reflection sym-
metry generally imposed on the equatorial plane. We inject matter just in first and
the fourth quadrants. We find that for lower centrifugal force i.e., for lower an-
gular momentum, the CENBOL stays symmetric, however a vertical oscillation
sets in which turns out to become more violent as the specific angular momen-
tum increases. This is superimposed with a horizontal oscillation. We likewise
find that the outflow rates from the two quadrants are different: The quadrant
in which the CENBOL is tilted, has a higher rate. The rates in the two quad-
rants are found to be anti-correlated. Giri & Chakrabarti (2013) and Giri et al.
(2015) have demonstrated that an injected sub-Keplerian flow can re-distribute
the angular momentum supplied at the outer boundary and forms a Keplerian
disc when sufficient viscosity (greater then the critical value) is supplied, giving
rise to the two component advective flow discussed theoretically by Chakrabarti
(1990) and Chakrabarti (1996) and used in calculating the spectra in Chakrabarti
(1995), Chakrabarti (1997) and Chakrabarti & Titarchuk (1995). The conclusions
drawn in this chapter based on the simulation results produced here will act as
the basis of the work which includes viscosity and radiative cooling as well as
magnetic fields. These will be discussed in the next chapters.
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Non magnetized viscous flow

Chakrabarti (1990a,b), Chakrabarti (1996) (see also, Chakrabarti and Das, 2001)
showed that there exists a critical value of viscosity parameter (α) which decides
whether standing shocks may form in a transonic flow. If the viscosity parameter
is greater than the critical value, the shock front will move outward and the disc
would become Keplerian component and subsonic. In Giri & Chakrabarti (2012),
this was demonstrated for a flow which have a reflection symmetry along the
equatorial plane. Radiative process plays a key role in shaping up the flow ge-
ometry, since, for an optically thick flow, the radiation will not leak out and flow
is puffed up. Though viscosity transports angular momentum, we need a proper
cooling process in order to create a standard Shakura & Sunyaev (1973, SS-73)
type disc. Chakrabarti 1995, Chakrabarti (1997, and references therein) based on
theoretical solutions for inviscid and viscous transonic flows (Chakrabarti 1989,
1990, 1996) showed that an accretion disc, in general, will consist of two com-
ponents: one is a subsonic Keplerian disc surrounded by a sub-Keplerian ad-
vective flow. This latter flow is puffed up and forms CENBOL which will act
as the Compton cloud where soft photons coming out of the Keplerian disc will
be scattered and energized to become hard photons. Soft photons constitute the
black body part of the spectrum and hard photons give the power law tail. This
Two Component Advective Flow model comes from the hydrodynamics itself
and thus it can explain the spectral and timing properties (QPOs, time lags etc.)
accurately. With suitable modifications, this model can also be extended to study
spectral properties of Neutron stars (Bhattacharjee et al. 2018, 2019) and AGNs
(Nandy et al. 2019). Giri & Chakrabarti (2013) simulated a two component advec-
tive flow using hydrodynamic simulation by appropriate choice of vertical vis-
cosity variations. In this ground breaking work, the flow is injected only through
the upper quadrant, ignoring the asymmetry of the flow with respect to the equa-
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torial plane.

In the previous chapter, we have shown that if the reflection symmetry along
the equatorial plane is not enforced i.e., if the CENBOL is allowed to have a ver-
tical oscillation as well for an inviscid flow it will retain the flow symmetry for
low angular momentum cases but as the angular momentum is increased, the
flow becomes very turbulent influencing the outflow properties. Since accord-
ing to Chakrabarti (1989, 1990a,b) for a lower angular momentum flow, matter
can be advected even without efficient angular momentum transport, we have
introduced viscosity and two types of radiative cooling depending on the opti-
cal depth in the flow with higher angular momentum. Our goal was to see (i)
whether Keplerian disc is formed and (ii) whether the flow remains turbulent af-
ter introducing viscosity and cooling when matter is injected through both the
quadrants. In this chapter, we will discuss these questions.

5.1 Simulation Procedure:

All the necessary governing equations and the procedure to implement two types
of radiative cooling has already been discussed at length in the chapters 2 and 3
so we will no repeat them here. In order to choose the viscosity parameter α,
we followed the prescription used in Giri & Chakrabarti (2013) and modified
it to generate the α-profile for a two quadrant flow. Our choice was decided
by what happens in a dwarf novae disc, where matter is accreted due to high
viscosity in the equatorial plane region. A similar configuration is applicable to
black holes also where in the equatorial region, the angular momentum transport
is maximum and thus α required is also highest. We use the α profile for two
quadrant flow as,

α = αmax − αmax

(
|z|

rmax

)δ

(5-1)

where rmax = rout = 200 rg and −200 ≤ z ≤ 200 and δ = 1.5. We have plot-
ted the z variation of α in Fig 5.1. From the eqn 5.1 it is clear that when z = 0
i.e, at the equatorial plane the α value is maximum. The maximum value of α is
chosen to be greater than the critical value of viscous parameter in order to facili-
tate an efficient way of angular momentum transport. Here, we have considered
αmax = 0.012. The simulation set up is already explained in chapter 4 in details.
Here, we take the grid number as Nr = 512 and Nz = 1024. Thus the grid size
is 0.39 rg. We have added two types of coolings, depending on the optical depth
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Figure 5.1: Variation of viscosity parameter (α) along the z-direction. Here,
αmax = 0.012.

of the flow which we calculate dynamically. A stellar black hole of mass 10M� is
placed at the origin of the co-ordinate system which we choose to be cylindrical.
In order to mimic the horizon of the black hole we place an absorbing boundary
at 1.1 rg. Here, we used a pseudo-Newtonian gravitational potential. We run the
simulation for several hundreds of dynamical time scale which in reality corre-
spond to a few seconds in physical time.

5.2 Simulation results

We consider that the flow is in vertical equilibrium (Chakrabarti 1989) at the outer
boundary which enables us to calculate the injection velocity and sound speed of
matter at the outer boundary. The matter is injected at all the radial grids. We
ran our simulations up to 95s which is a few hundred times of the dynamical
timescale. By this time, all the transient phases of the simulations are over. We
perform a two dimensional simulation of the flow which spans in two quadrants
of the r − z plane of the cylindrical coordinate system. Here we have revoked
the reflection symmetry along the equatorial plane. In the previous Chapters
we have seen that the removal of reflection symmetry causes the shocks to have
horizontal oscillations as well as the vertical oscillation. Also the flow becomes
increasingly turbulent with angular momentum. Presently, we have added vis-
cosity and a radiative cooling into the system and run the simulation. In Fig. 5.2
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Figure 5.2: Density and velocity vector map to show the gradual formation of
Keplerian disc at (a) t = 9.6 s, (b) 24.4 s, and (d) 95 s. Specific angular momentum
is considered to be λ = 1.7.

we have plotted the density and velocity variation of the flow. Several snapshots
of the simulation have been taken at different times. The first panel corresponds
to simulation time of t = 9.6 s, the time in the second panel is t = 24.4 s, and
the third panel refers to the simulation time of t = 95 s. The angular momentum
(λ) and energy (ε) is chosen to be 1.7 and 0.001 respectively. The maximum value
of the viscosity parameter α is chosen to be 0.012 which is greater than the criti-
cal viscosity parameter of the flow associated with the particular flow parameter.
Since we have implemented radiative coolings according to the optical depth of
the flow, we considered a critical value of optical depth (τc): τc = 10.0 which is
calculated using eqn. 2-67. If the optical depth of the region τ < τc, we will have
a power law type cooling described in eq. 2-66 where the cooling index (β) is cho-
sen to be 0.6 and if τ ≥ τc, the black body type cooling is implemented (see 2-68).
In fig. 5.3 we show the specific angular momentum distribution on the equatorial
plane region and have compared with the Keplerian distribution. The dashed
curve represents the theoretical Keplerian distribution which goes as ∼ r

1
2 and

the solid curve represents the radial distribution of specific angular momentum
obtained from the simulation of matter flow with viscosity and radiative cooling.
The panels are drawnn for the times same as those of the snapshots in fig. 5.2.
The time stamps are t = 9.6 s, 24.4 s, and 95 s respectively. From these three
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Figure 5.3: A comparison between specific angular momentum distribution at the
equatorial plane with the Keplerian angular momentum distribution. Injected
angular momentum is 1.7 and figures are drawn for different times as specified
in fig 5.2.
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(a) (i) (b) (ii)

Figure 5.4: Mach number distribution for the subsonic (i) and supersonic (ii) flow.

panels it is evident that the specific angular momentum obtained from the simu-
lation coincides with the Keplerian distribution. From this, we can infer that with
viscosity and cooling, the injected flow of angular momentum of 1.7 the angular
momentum is transported efficiently at the equatorial plane as expected and the
Keplerian disc is formed gradually and also the angular momentum distribution
attains Keplerian value till the point up to which the Keplerian disc is formed.
The matter in the Keplerian disc region is sub-sonic and only at the region be-
tween horizon and the inner sonic point the matter will be supersonic. This can
be seen in figs. 5.4 and 5.5 where we have plotted the Mach number distribution
in both the components. In fig. 5.4 the Mach number range is set from 0 to 1.4 and
in fig 5.5 this range is 1.5 to 15. The first figure corresponds to a subsonic regime
which represents the Keplerian disc and second figure corresponds to the gener-
ally supersonic regime. In previous few figures we have seen that with sufficient
amount of viscosity and with proper implementation of radiative cooling, the tur-
bulence seen in the inviscid flow (see, Chapter 4) are smeared out completely and
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Figure 5.5: Temperature variation of the fluid flow. Temperatures are written
in KeV unit. Here, we have plotted log10 T. This snapshot of the temperature
variation is taken for time t = 95 s
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Figure 5.6: Radial variation of the temperature of the simulated Keplerian disc.
Temperatures are written in KeV unit. Here, we have used log− log scale. The
index γ of the radial variation of temperature T(r) ∼ r−γ is 0.797

flow becomes stable for higher angular momentum case as well and also forms a
Keplerian disc at the equatorial plane region same as Giri & Chakrabarti (2013).
In next few figures we shall demonstrate that not only angular momentum but
temperature distribution also matches with the Keplerian disc. In fig. 5.6 we
have plotted the spatial variation of log10(T) in KeV. It is evident from this figure
that due to black body type of cooling in the equatorial region where the disc is
formed, this region is colder than that of the rest of the sub-Keplerian flow which
surrounds the Keplerian component. After the shock region the Keplerian and
sub Keplerian components get mixed up before entering the black hole. In fig 5.7
we have plotted the radial variation of vertically averaged temperature of the Ke-
plerian disc in log scale. In Shakura & Sunyaev (1973) it was shown that for a thin
Keplerian disc, the temperature varies as ∼ r−

3
4 . Since we also have employed

∼ T4 type cooling in Keplerian disc region we also should find similar type of
radial variation. In fig. 5.7 we have used log− log scale and have fitted it with a
straight line with proper initial guess. We have the best fit for a straight line with
slope m = −0.797. Thus the temperature of the simulated Keplerian disc varies
with r as ∼ r−γ where γ = 0.797. This almost matches with the theoretical slope.
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Magnetized accretion flow

6.1 Introduction

A clear comprehension of formation, acceleration, and collimation of radio jets
has been elluding the astrophysicists for decades. Lynden-Bell (1978) proposed a
vortex like structure near the axis of a geometrical thick disc. It was conjectured
that some of the disc matter is pushed away and accelerated along the axis due
to super-Eddington luminous radiation in that region. This paved the initial di-
rection to the theoretical approaches which attempted to explain collimation and
acceleration of the jets. In subsequent years, many theoretical works have been
done by various groups and a large body of literature is available that explores
many aspects of the mechanisms related to the jet collimation and acceleration.
For example, Fukue 1982, Chakrabarti 1986 attempted hydrodynamic processes;
Blandford & Payne 1982, Chakrabarti & Bhaskaran 1992 discussed jet collimation
and acceleration by hydro-magnetic processes; Camenzind 1989; Heyvaerts &
Norman 1989 and Lovelace 1976 discussed collimation of jets by magnetic fields;
Eardley & Lightman 1975, Galeev et al. 1979, Coroniti 1981, Shibata et al. 1990,
Chakrabarti 1990a discussed the effects of buoyancy and shear amplification on
the magnetic flux tubes in the paradigm of thin accretion disc. Study of dynamics
of toroidal magnetic flux tube in the setting of context of a thick accretion disc
has been done by Chakrabarti & D’Silva (1994a, henceforth CD94) and D’Silva &
Chakrabarti (1994b, henceforth DC94) where they demonstrated the dynamics of
toroidal flux tubes injected into the thick disc. They studied the effects of various
flows and flux tube parameters. So far, no study of the flux tube behavior and its
possible effects on the flow dynamics and on the jet formation a time dependent,
geometrically thick transonic flow has been performed.

In the present chapter, we extend our previous studies to time dependent
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flows and investigate the dynamics of flux tubes inside a time dependent hy-
drodynamic flow. We find dependence on various flow parameters such as, an-
gular momentum, flow energy and most importantly the flux tube parameters.
We also study how the flux tubes will aide in the collimation and acceleration of
jets/outflow. We first start an inviscid disc as described in chapter 4 and then
build up our study for a viscous flow.

6.2 Computational procedure

In order to continue with our study, along with the hydrodynamic equations and
equations of motion of the flux tubes we need to use the equation to compute
magnetic buoyancy factor (M) and the area increment factor (A) with the con-
straint that the flux tubes move adiabatically inside the accretion flow, i.e., no
heat is exchanged between the flux tube and the surrounding fluid. The entropy
inside stays constant while the flux tubes navigated inside the disc. Following
the calculations done in chapter 2 utilizing aforementioned assumptions we get
an expression for ρi/ρe (CD94),

k1

(
ρi

ρe

)4/3

+ k2

(
ρi

ρe

)2

− 1 = 0, (6-1)

where,

k1 =
(1− βeM0)

(1−M0)4/3 ,

k2 = βe
M0

(1−M0)2

(
Te

Te,0

)2(
ξ sin θ

ξ0 sin θ0

)2

.

From this condition we get ρi/ρe and subsequently the magnetic buoyancy fac-
tor (M). Here, ρ represents density of the fluid and the subscripts i and e refer
to internal and external values of the physical quantities. In our simulation, we
considered an inviscid thick advective disc around a black hole of mass 10 M�.
To compute within a sensible time frame, we consider a small disc with the outer
boundary at 200 rg. The real size of the disc is significantly bigger than what we
are assuming. Since we are keen on studying the generic behavior of the mag-
netic flux tubes near the centrifugal barrier we will proceed with these typical
parameters all through our simulations. Second, at this distance, all the random
flux tubes entering far away from the central object are thought to have a toroidal
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geometry. We inject these flux tubes from the radial grid boundary, i.e., at the
200 rg close to the equatorial plane. We consider an inviscid disc with the goal
that the angular momentum remains the same all through. The specific energy of
the injected matter remains constant since we have not considered any radiative
cooling process. For the detailed portrayal of the numerical setup for the disc
simulation, refer to Chapter 3 and also section 4.2 (see also Deb, Giri, Chakrabarti
2016). Schemes, essential properties of the code, and test outcomes are discussed
in §3.6. For more explicit discussion refer to Harten (1983). In a transonic flow
there are just two free parameters: angular momentum and specific energy. This
is less than any other solutions, in light of the fact that the sonic point condi-
tion takes out the need of providing any more free parameters. With these two
parameters, we know both the sonic points of the flow, the shock location and
every single other property of the flow. We supply just λ and specific energy
as the boundary condition. Angular momentum is characterized as, λ = rvφ in
the unit of 2GM/c. The values taken are less than the marginally stable λ. Some-
what higher than the marginally stable value is likewise permitted (till marginally
bound value of 2.0) so as to have a sonic point. In Giri and Chakrabarti (2013) it
has been demonstrated that in presence of viscosity, beginning from angular mo-
mentum lower than λms , Keplerian disc is formed. Along these lines, for inviscid
case, we picked λ < λms so the flow essentially remains sub Keplerian. Total
energy(ε) of the injected stream is chosen to be less than the rest mass energy of
the electron. We use injected matter having constant angular momentum of (i)
λ = 1.6, and (ii) λ = 1.7 and for every one of these cases we utilize the specific
energies ε = 0.001, 0.002, 0.006. We also used the same set up for a flow with
viscosity. The magnetic flux tubes at the outer boundary are injected close to the
central plane (θ = 89◦) with an initial magnetic buoyancy (M0) which we calcu-
late by taking the ratio between the magnetic pressure and external gas pressure.
We inject the flux tubes after the flow achieved an equilibrium configuration so
that all the transient effects are removed. We couple the equation of motion for
the tube with the hydrodynamic TVD code. We change the source term as given
in 2-69 by including Lorentz force term. This will include the effects of the flux
tube on the fluid. The input parameters, in particular, angular momentum and
total energy gives a unique injection velocity and sound speed at the outer bound-
ary. These together with a density at the outer boundary (scaled as unity at the
equatorial region) gives the accretion rate. In a non-dissipative flow, the outcome
does not depend on the density explicitly. We compute the density, velocity, pres-
sure and temperature profiles utilizing time dependant TVD code in light of the
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boundary conditions and the equation of state. These flow parameters’ values
are utilized as the input parameters to calculate the dynamics of a flux tube in-
side the disc since the drag, magnetic buoyancy, magnetic tension etc. depend
on the surrounding in which the tube is moving. Those in turn are put in the eq.
2-71-2-73 and we numerically compute them with the help of the fourth order
Runge-Kutta technique (Deb, Giri, Chakrabarti 2017).

6.3 Inviscid magnetized disc

In earlier works (CD94 and DC94), the toroidal flux tube was inserted into a rotat-
ing thick accretion disc (with radial velocity superimposed) for different angular
momentum distribution where the distribution has the form of ∼ Rn where R is
the axial distance and n is a positive constant according to the stability criterion
under the axisymmetric perturbation. n = 0 implies that the angular momentum
is constant which mimics an inviscid case and n 6= 0 implies that angular mo-
mentum varies with different axial distance inside the disc. It was seen in their
calculation for different point of injection the flux tubes emerges from different
parts of the discs and these positions of emergence also depend on the initial
cross sectional radius. They also showed that for proper entropy condition flux
tubes oscillate inside the disc creation the condition of flux storage. In our work
(see Deb, Giri, Chakrabarti 2017), we proceed in the same line but we inject the
flux tubes at the outer boundary as in a real situation these flux tubes are accreted
along with the matter from the companion and also for a time dependent inviscid
and viscous disc and also focus on the effect of magnetic flux tubes on collimation
and acceleration of jets/outflows. For this purpose, we carried out simulations
for various cases and obtained significant results. In the sections below we shall
present those results (Deb, Giri, Chakrabarti 2017) and discuss them.

6.3.1 Dynamics of magnetic flux tubes inside an advective flow

The trajectories of the flux tubes as computed in our simulations are plotted in r−
z plane. Figure 6.1 demonstrates the paths for the flux tubes inserted with initial
cross sectional radii 0.001, 0.005, 0.01, & 0.1 rg respectively discharged from the
outer boundary with two distinctive flow energies, in particular, ε = 0.001, 0.002
(labelled). The purposes for picking such small cross sectional radii are clarified
in the following discussion. To begin with, the axisymmetric flux tubes must
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be made ab initio through shear and re-connection processes. So they are, by
definition filamentary. Second, the cross sectional radii have to be chosen to be
smaller with respect to the gravitational radius and the local pressure scale height
so we can make the approximation that the variation of disc variables inside the
flux tube is insignificant. Third, regardless of whether the filaments join and make
tubes of larger cross-sectional area, the drag force will be too high and magnetic
buoyancy will expel them from the disc much before they come nearer the black
hole. We choose a low angular momentum flow with λ = 1.6. This would be
the component which will make CENBOL close to the horizon. Since close to
the axis, the centrifugal force is extremely high, a vortex like opening is formed
which is called the "chimney" or the funnel divider (CD94). We have seen that
before getting accreted by the black hole, a flux tube experiences oscillation near
the black hole for a significant time and actually emerges in both chimneys. For
both the energies, magnetic flux tubes having initial σ < 0.1rg emerge in the
chimney. In our Figures, they appear to be going into the black hole, though
in reality, they leave through the surface of the disc. Flux tubes with σ ≥ 0.1rg

are expelled out for the lower energy cases (Deb, Giri, Chakrabarti 2017). As we
increase the energy of the flow, the flux rings have a tendency to oscillate as they
will have more kinetic energy than the lower flow energy setup. Since this is
an inviscid flow with constant angular momentum, Coriolis force will not have
any influence in the dynamics and flux tubes will move inwards along the local
pressure gradient (CD94).

We repeat the simulations for a similar variation of σs and for larger angu-
lar momentum (λ = 1.7) and the energies ε = 0.002, 0.006 for which the dy-
namics of flux tubes is demonstrated in Fig. 6.2 and Fig. 6.3. We see that
the flux tubes having σ ≤ 0.005 rg will fall onto the black hole which is same
as what we have found in Fig. 6.1 (see also CD94 and DC94). However con-
trary to the earlier case (Fig. 6.1), the flux tubes with σ ≥ 0.01 rg will be ex-
pelled away. The flux tubes with distinct initial σ will take different times to
complete their trajectories. In case of Fig. 6.1, for ε = 0.001, end times for
flux tubes with injected initial cross sectional radii 0.001 rg, 0.005 rg, 0.01 rg and
0.1 rg are tend = 2.12, 2.7, 9.46, & 5.8 seconds individually and for ε = 0.002,
tend = 2.2, 19.8, 20.4, 6.1 seconds respectively. In the event of Figs. 6.2 and 6.3
this tend is given as, for ε = 0.002, tend = 8.65, 9.2, 3.34, & 5.77 s, and also, for
ε = 0.006, tend = 21.2, 22.3, 5.15, & 12.64 s respectively. It is seen from our
simulation results that the flux tubes exhibiting oscillatory motion have longer
resodence time inside the disc. The infall time in the simulations is ∼ 0.6− 0.7 s
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Figure 6.1: Trajectories of flux tubes injected from the outer boundary i.e., r =

200rg and θ = 89◦ with zero initial velocity. Trajectories are in r = R sin θ vs.
z = R cos θ plane. The trajectories are drawn for a flow with angular momentum
λ = 1.6 and energies 0.001 (upper panel) and 0.002 (lower panel). σ is the cross
sectional radii of the injected flux tubes. Here σ values are 0.001 rg , 0.005 rg,
0.01 rg and 0.1 rg (Deb, Giri, Chakrabarti 2017).

and it can be observed that the residence time of every flux tube inside the disc is
a few times longer than this for all the cases we explored.

Figures 6.4 and 6.5 show the energy dependence of the trajectories of the flux
tubes discharged in a flow having angular momenta 1.6 and 1.7 respectively. As
we increase the energy, the flow turns out to be more turbulent and in this way it
imparts more kinetic energy to the flux tubes. In Fig. 6.4 we have chosen the flow
energy to be ε = 0.001 & 0.002 also, in Fig. 6.5 energy is ε = 0.002 & 0.006.

As a flux tube moves toward the central object along the direction of the
pressure gradient force it attempts to keep pressure equilibrium (i.e., an equilib-
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Figure 6.2: Trajectories of the flux tubes injected from the outer boundary i.e.,
r = 200rg and θ = 89◦ with zero initial velocity. Trajectories are drawn in r =

R sin θ vs. z = R cos θ plane. The trajectories are drawn for a flow with angular
momentum λ = 1.7 and energies 0.006 (lower panel) and 0.002 (upper panel). σ

signifies the cross sectional radii of the flux tubes for which the trajectories are
drawn. Here σ values are 0.001 rg, 0.005 rg, and 0.1 rg (Deb, Giri, Chakrabarti
2017)
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(lower panel) (Deb, Giri, Chakrabarti 2017).



Chapter 6. 82

0 50 100 150 200

0

1

2

3

4

z
(r

g
)

0 50 100 150 200

0

1

2

3

4

0 50 100 150 200

r(r
g
)

-2

-1

0

1

2

3

4

z
(r

g
)

0 50 100 150 200

r(r
g
)

-2

-1

0

1

2

3

4

 ε  = 0.002

 ε  = 0.001

 ε  = 0.002

 ε  = 0.002

 ε  = 0.002

 ε  = 0.001

 ε  = 0.001

 ε  = 0.001

 σ
0

 = 0.001 r
g  σ

0
 = 0.005 r

g

 σ
0

 = 0.01 r
g

 σ
0

 = 0.1 r
g

Figure 6.4: Trajectories of flux tubes having same σ but with different flow ener-
gies (marked) are drawn to demonstrate energy dependence of the trajectory of
the flux tube inside the disc. ε = 0.001 & 0.002 are marked on the curves. Angular
momentum of the flow is 1.6 (Deb, Giri, Chakrabarti 2017).
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rium between the external gas pressure and internal gas pressure together with
the magnetic pressure) with its immediate surroundings. When the flux tube is
compressed during its journey towards the black hole, the internal density is in-
creased is becomes heavier than the surrounding matter. However, closer to the
black hole, density of the gas in the disc rises rapidly in the same direction. The
outcome is that the inward journey of the flux tube is stopped and it is repulsed
back. During the ensuing outward motion, the flux tube density drops faster
than that of the surroundings and depending upon its direction, it can either es-
cape or oscillate depending on the relative changes in the cross-section area and
the disc density, which essentially control the buoyancy force. It has been dis-
cussed in CD94 and DC94 that as in the Sun, where the flux tubes are tied down
in the region between the radiative and convective zones and at the base of the
anchored flux tubes entropy gradient changes sign, similar anchoring as well as
oscillation of flux tubes in case of accretion disc should be observed under similar
conditions. In case of the Sun due to Parker’s instability, the anchored flux tube
emerged at the surface and likewise for an accretion disc, the anchored and oscil-
lating flux tubes may also appear near the chimney because of a few perturbative
effects causing magnetic activities (collimation as well as acceleration of jets ) (see,
CD94 and DC94). However, demonstration of aforementioned activities will re-
quire a three dimensional simulation which we planned to carry out in future. If
the flow is turbulence free and laminar, the entropy remains constant throughout
the flow but in our case because of tug-of-war between the gravitational force
and the centrifugal force, the flow ends up turbulent close to the centrifugal bar-
rier and could indeed, even form shocks which will create entropy. In Fig. 6.6,
we plot the map of the radial component of the entropy gradient (~∇r) at two
unique times, t ∼ 4.06s and 6.33s separately. The angular momentum (λ) and
specific energy of the flow are chosen to be 1.6 and 0.002 separately. In both the
panels we see that the r component of the entropy gradient changes sign i.e., it
goes from positive to negative and the other way around which creates a Solar
interior like circumstance where the oscillating flux tube can be provided an an-
chorage by the entropy gradient. Figures 6.7 and 6.8 indicate variations of the
cross sectional radius of the magnetic flux tubes with respect to the vertical dis-
tances the flux ring crosses. The panels in each Figure contain the σ-variations for
distinct initial cross sectional radii (σ0). The initial σs for the plots are chosen to be
σ0 = 0.001, 0.005, 0.01, & 0.1rg. Every one of the Figures are drawn for different
angular momenta and specific energies of the flow. Figures 6.7 and 6.8 have the
λ and ε configurations as (λ, ε) = (1.6, 0.002) & (1.7, 0.006) respectively. The
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Figure 6.6: Time variations of radial component of the entropy gradient plot of the
flow having angular momentum (λ) 1.6 and energy (ε) 0.002. Both the plot shows
that the radial component of the entropy gradient switches sign from positive to
negative and vice versa. This switching is responsible for providing an anchorage
of the oscillating flux tubes and consequently may cause a corona like structure.
Two plots are drawn at t ∼ 4.06 & 6.33 s respectively (Deb, Giri, Chakrabarti
2017).
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Figure 6.7: z variation of the radius of cross section(σ) of flux tubes released in
an inviscid accretion flow with energy ε = 0.002 and angular momentum(λ) 1.6.
Each panel shows the σ variation for different initial cross sectional radius. initial
σ’s are σ = 0.001, 0.005, 0.01, & 0.1 rg (Deb, Giri, Chakrabarti 2017)

divergence of the magnetic field should always be zero and the net flux of the
toroidal flux tubes stays constant all through its trajectory. Accordingly, when σ

diminishes, the magnetic field intensity (B) will increase (B ∝ 1
σ2 ) and vice versa,

influencing the buoyancy force.

In Figs. 6.7 and 6.8 it is seen that the cross sectional radius quickly increases
and decreases hence subsequently to conserve the flux, the field will also change
inverse squarely with the cross-sectional radius. Typically, at the point when the
flux tube falls towards the central object the field intensity increases on an average
(barring the oscillations) and because of this the magnetic pressure holds matter
inside the tube and does not enable them to leak out sideways. Presently, There
are two contradicting effects: While moving in, the flux increases and collimates
the outflowing matter at the base of the jet. In any case, as the flux tube leaves
along the axis its pressure decreases and its capacity to collimate diminishes, in
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Figure 6.8: z variation of the radius of cross section (σ) of flux tubes released in
an inviscid accretion flow with energy ε = 0.006 and angular momentum (λ) 1.7.
Each panel shows the σ variation for different initial cross sectional radius. initial
σ’s are σ = 0.001, 0.005, 0.01, & 0.1 rg (Deb, Giri, Chakrabarti 2017).

spite of the fact that not to such an extent, since the jet itself is getting to be less
dense as it extends out. We see an average effect instead of a sustained effect. If
a huge number of such tubes could be infused, they would have a managed to
render a sustained impact in collimating the jets.

6.3.2 Collimation and acceleration of outflows/jets

Jets can be classified into two broader classes: (a) persistent slow moving outflow
which is continually ejected from the post-shock region and is collimated by the
flux tubes on an average and (b) blobs of fast moving fluids which are squirted
out because of a sudden collapse of the inward region of the disc. These are
because of magnetic tension. In the event of a very strong magnetic flux tube,
it would collapse towards its axis due to strong magnetic tension obliterating
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the CENBOL and produce blobs of fluid by the so-called magnetic rubber band
effects (b above). These blobs are quick moving in the first place. The type (a)
outflows talked about above is accelerated implicitly: the collimation of the jets
lessens its lateral width keeping its initial energy intact. The cross-sectional area
increases gradually with distance (along the Z axis) and in this manner, they are
accelerated.

In Figs. 6.10 and 6.11 we plot radial variation of the outflow rate acquired
from both the quadrants, upper and lower. Here, we have made a comparative
study of the outflow acquired from the flow with the magnetic flux tube infused
in it with the flow that does not have any presence of the magnetic flux tube
in it. The initial two rows show the outflow being collimated n the presence of
the magnetic flux tube while the lower two rows imply fading of the collimating
effects of the flux ring as it escapes from the computation box or falls onto the
black hole. The black curve denotes the outflow rate for the magnetized flow
and the red curve is for the non-magnetized case. Both the Figures (Fig. 6.10
and Fig. 6.11) are drawn for a similar set of σ (= 0.001, 0.005, 0.01, 0.1 rg).
We have run our simulation for t ∼ 23.76 s and for both the Figures each panel
demonstrates radial variation of outflow rate at various time steps (see, Figs. 6.10
and 6.11). There was no particular reason behind picking these specific times.
Our motivation solely stems from the fact that we wanted to demonstrate the
impact of magnetic flux tubes on the outflow and how its presence or absence
in the disc affects the outflow formation. So we covered the whole run time and
exhibited four figures at each time where aforementioned effects were sufficiently
prominent.

The angular momentum (λ) and the specific energy (ε) for Fig. 6.10 are chosen
to be 1.6 and 0.002 respectively and for Fig. 6.11 the estimation of λ and ε are 1.7
and 0.006 respectively. In Fig. 6.10 (a-h), the collimation of the outflow is evident.
The outflow rate for the magnetized flow has a sharp crest at around the region of
30− 50 rg. whereas the outflow rate for the non-magnetized flow accomplishes a
maximum value at around 50− 90 rg. Again, the maximum value of the outflow
rate is considerably higher, nearly 2− 3 times higher than the maximum value of
outflow rate for the non-magnetized case. As opposed to what we have found in
Fig. 6.10, in the case of Fig. 6.11, in the panels (a-h) we see that the collimating
effect is not as noticeable as what was be seen in the previous case. In this case,
the outflow rate for magnetized flow attains a maximum value of around 50−
80 rg which is more distant than what we have found in Fig. 6.10(a-h). The
reason is that higher the angular momentum is, higher is the centrifugal force,
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Figure 6.9: Velocity vector plot of the flow with magnetic flux tubes. (a,b),
(c,d),(e,f), and (g,h) are velocity vector fields of the flow having magnetic flux
tube of cross sectional radii 0.001, 0.005, 0.01, 0.1 rg respectively. Angular mo-
mentum and specific energy are 1.6 and 0.002 respectively. The times specified
are the same as in Fig. 6.10. The dots signify the position of flux tube at the
respective times specified in each panel.
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Figure 6.10: Radial distribution of the outflow rate (Ṁout) of the flow having the
specific angular momentum (λ) = 1.6 and energy (ε) = 0.002. The black solid
curve represents the outflow rate for the flow with magnetic field and red solid
curve (dot-dashed in hard copies) denotes the result in non-magnetic case. The
upper two rows (a-h) of the plot show the collimation of the outflow from upper
and lower quadrants respectively for different flux tubes with different σ. The
lower two rows (i-p) depict the gradual reduction of the collimating effects once
the flux tube has escaped or fallen into the black hole. The vertical dashed lines
drawn in panels of first two rows depict the position of the flux tube at time for
which the outflow rates are drawn (Deb, Giri, Chakrabarti 2017).
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Figure 6.11: Same as Fig. 6.10, but λ = 1.7 and ε = 0.006 (Deb, Giri, Chakrabarti
2017).

and accordingly, it is hard to collimate the outward flow by the field lines of
similar strength. In Fig. 6.10(i-p), the outflow rate is plotted after the magnetic
flux tubes have either gotten away from the simulation box or fallen towards the
black hole. We see that the impacts of the magnetic flux tubes have begun to blur
away. For the case of Fig. 6.10 (i, j, m, and n), the outflow rate is plotted long
after the flux tube has gone away or fallen into the black hole. In these cases, it
is clear that the impacts of the flux tubes have diminished significantly and the
outflow rates of magnetic and non-magnetic cases nearly match. Since for the
case demonstrated in Fig. 6.10 (k) and (o), the radial variation of the outflow rate
is plotted just a couple of tens of dynamical time after the flux tubes escape from
the simulation box, the outflow rates of magnetic and non-magnetic cases do not
match, however, the tendency that they approach each other is clear. In Fig. 6.11
(i-p), the fading away of the impacts of the magnetic field is particularly obvious
for the flux tubes with high injected σ and in the cases Fig. 6.11(k, o, l, p), the
outflow rate for both magnetic and non-magnetic cases almost match with one
another. Figure 6.12 demonstrates time variation of the aggregate outflow rate
for upper and lower quadrants. The outflow rate rises when the magnetic flux
tube stays in the stream yet when it leaves the system, the outflow rate returns
back to that of the non-magnetic flow.

As the outflowing matter gets squeezed and squirts off along the vertical axis
because of the presence of the magnetic flux tube, the z-component of the velocity
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Figure 6.12: Time variation of the total outflow rate for magnetic and non-
magnetic cases with angular momentum 1.6 and specific energy 0.002. Panels
(a,c,e,g) represents net outflow rate for upper quadrant and panels (b,d,f,h) rep-
resents total outflow rate for lower quadrant of the flow. Solid line represents to-
tal outflow rate for magnetic cases and dashed line represents the non-magnetic
cases. Panels (a,b), (c,d), (e,f), and (g,h) are drawn for flux tube with cross sec-
tional radii 0.001, 0.005, 0.01, 0.1 rg (Deb, Giri, Chakrabarti 2017).
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of the matter is observed to increase altogether in contrast with the non-magnetic
situation. This means that within the site of the toroidal flux tube, the outflowing
matter is accelerated. To demonstrate that we captured this impact as well, in
Figs. 6.13 and 6.14 we plot the contour maps of the differential speed, i.e., the
difference between z-component of velocities for the magnetic and non-magnetic
cases.

In Figs. 6.13 and 6.14, upper and lower panels demonstrate that the accelera-
tion of matter velocity in the outflowing region of the disc is conspicuous in both
the upper and lower quadrants of a two-quadrant flow. Every one of Figs. 6.13(a-
h) and Figs.6.14(a-h) is drawn for various cross-sectional radii of flux tubes. Here,
σs are the usual set for which previous Figures are drawn. The times for which
the maps are drawn are similar as specified in the Figures indicating collimations
of the outflow. We plotted (vz,mag − vz,non−mag). If the difference is positive that
will imply that due to the presence of magnetic flux tubes the z-component of
the velocity is increased i.e., the fluid flow in that region has been accelerated.
Figure 6.13 is drawn for λ = 1.6 and Fig. 6.14 is drawn for λ = 1.7. In Fig. 6.13,
it can be seen that for every one of the cases the z velocity of magnetized flow
has increased within 5− 50rg in the radial direction for both the upper and lower
quadrants and the maximum velocity difference has gone up to 0.36c in some in-
stances. In contrast to Fig. 6.13, in Fig. 6.14, the region where the z-velocity of
magnetized stream increases is wider and it extends up to a radial separation of
100 rg. For this situation, the maximum value of the velocity difference that can
be achieved is 0.18c. This is much lower than what is found in Fig. 6.13. This dis-
similarity is because of the fact that for higher angular momentum the centrifugal
force is higher and the flow is difficult to collimate as in Fig. 6.10 and hence the
acceleration of jets/outflows by the field lines infused with similar initial strength
was reduced.

6.4 Viscous magnetized disc

In this section we will discuss about viscous magnetized flow where we have
added viscosity in the flow and have injected a single magnetic flux tube inside
the flow from the outer boundary near the equatorial plane. The angular momen-
tum of the flow is considered to be 1.6. Here we have considered α viscosity and
the α profile is implemented in the same way as it was done in non-magnetized
viscous flow as discussed in the previous chapter. Here, we have considered
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Figure 6.13: Map of the difference between z-velocity of magnetized and non-
magnetized flows. (a-d) represent the upper quadrant and (e-h) represent the
lower quadrant of a two quadrant flow. Each pair of panels (upper and lower)
represent different cross sectional radius. Here,σ (= 0.001, 0.005, 0.01, 0.1 rg).
Angular momentum (λ) is 1.6 and specific energy (ε) is 0.002. Each panel is drawn
for different times. The circles drawn in the panel give the position of flux tube
at times for which the panels are drawn (Deb, Giri, Chakrabarti 2017).
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Figure 6.14: Same as Fig. 13, but λ = 1.7 and ε = 0.006. The time written in each
panel is the same as Fig. 6.11 (Deb, Giri, Chakrabarti 2017).
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Figure 6.15: Trajectories of flux tubes injected from the outer boundary i.e., r =

200rg and θ = 89◦ with zero initial velocity. Trajectories are in r = R sin θ vs.
z = R cos θ plane. The trajectories are drawn for a flow with angular momentum
λ = 1.6 and energies 0.001. σ is the cross sectional radii of the injected flux tubes.
Here σ values are 0.001 rg , 0.01 rg, and 0.05 rg.

initial buoyancy factor (m0) to be 0.5. With the addition of viscosity, angular
momentum of the flow no longer remains constant and the effects of Coriolis
force may be prominent (CD94, DC94) In Fig-6.15 we have plotted the trajecto-
ries of the magnetic flux tube for viscous flow. The initial cross sectional radii are
σ0 = 0.001, 0.01, 0.05 rg. From this figure we can observe that the flux tubes with
smaller cross sectional radii can undergo oscillations and eventually will be an-
chored inside the disc. However, those with bigger cross-sections, flux tubes will
be expelled from the disc. In this case, since initial buoyancy factor is a few times
higher than what we have used in inviscid case, the magnetic buoyancy force is
also higher than the inviscid case which is evident from Fig-6.16. In this Figure,
we have plotted the magnitude of the buoyancy force for two different M0. The
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Figure 6.16: Comparison between radial distribution of magnitude of buoyancy
force for m0 = 0.01 (green) and m0 = 0.5 (magenta).

profile with higher M0 is drawn for viscous case and the lower one is for inviscid
case. We now investigate if the outflows are collimated as what we have seen in
inviscid case. For that purpose, we calculate the radial distribution of outflow
rate for magnetized viscous flow and compare it with non-magnetized viscous
flow.

Figures 6.17(i) and (ii) show a comparison between the radial distribution of
outflow rate of magnetized and non-magnetized flow for upper and lower quad-
rants respectively. In these two Figures, we can see that the outflow is well colli-
mated in presence of magnetic field in the same way as in an inviscid flow.
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and panel (ii) is drawn for lower quadrant at t = 1.2s.
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Conclusions & Future Work

Here we summarize the main conclusions of the work. This will be followed by
the current activities and the future plans.

7.1 Conclusions

In two component advective flow (TCAF) paradigm, formation of outflow, col-
limated or not, is coupled with the formation and structure of the CENBOL as
this acts as the base of the outflow (Chakrabarti 1999). These outflows can be ac-
celerated either by hydrodynamical processes (Fukue 1982; Chakrabarti 1986) or
radiative processes (Chattopadhyay & Chakrabarti, 2002; Chattopadhyay, Das &
Chakrabarti, 2004) or by sudden collapse of magnetic field lines which eventually
destroys the inner part of the disc causing the acceleration (Nandi, Chakrabarti,
Vadawale & Rao, 2001). Magnetic field may not be dynamically important in ex-
plaining spectral or timing properties of the black hole and the accretion process
as a whole. In TCAF paradigm, collimation of jets are initiated by hoop stress
of toroidal the magnetic fields which are expelled from the accretion flow. In
this thesis our goal was to examine if this toroidal flux tube is injected in a time
dependant viscous or inviscid flow, whether it will be able to collimate and ac-
celerate the outflow. We also wish to investigate the dynamics of the field lines
inside a time dependent disc by improving on the earlier works of Chakrabarti &
D’Silva (1994) and D’Silva and Chakrabarti (1994) where a steady thick disc was
used. Here, we successfully demonstrate the dynamics using a set of equations
which was historically constructed for sun (Choudhuri & Gilman, 1987; Choud-
huri 1989, 1990 and implemented in Accretion disks by CD94 and DC94). We
successfully show that indeed toroidal magnetic field can dynamically collimate

99
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and accelerate the outflow.
In Chapter 1 we presented a brief introduction to the astrophysical black holes
and accretion discs which surround them. I presented how theories of accretion
discs evolved with time by discussing the theoretical models which explained
many observed phenomena. After this we delved into the discussion of jets and
outflows and their ubiquitous nature. A discussion regarding the general poten-
tial and pseudo-Newtonian potential described in Paczyński & Wiita 1980 was
presented in §1.1. Next, in §1.2 we discussed about the accretion processes fol-
lowed by a brief discussion on time independent theoretical models of accretion
disc in §1.3. In §1.4 we discussed about the Jets and outflows and effects of the
magnetic fields. Here, we have first started with describing the ubiquitous na-
ture of the jets and outflows as they can be found in a wide array of astrophys-
ical objects such as AGNs, Young Stellar Objects (YSO), Stellar mass black holes
and microquasars etc. Next, we presented how the idea of magnetized disc and
its connection to launching of collimated jets is evolved throughout the time for
compact objects. We then discussed about the pioneering work of Chakrabarti
& D’Silva (1994a) (CD94) and D’Silva & Chakrabarti (1994b) (DC94) where they
demonstrated how a toroidal magnetic flux tube injected inside a steady thick
disc (Rees et al. 1982, Paczyński & Wiita 1980) having a power law angular mo-
mentum distribution inside the disc (Paczyński & Wiita 1980, Chakrabarti 1985)
behaves. In CD94 they explained how a flux ring can be expelled towards the
"chimney" and in DC94 they showed that flux tubes can be anchored which mim-
ics a solar type interior.

In Chapter 2, we discussed about the hydrodynamic simulation of both non
magnetized and magnetized accretion flow around black holes. We started from
the basic conservation equations that describe the dynamics of a fluid flow and
modified it for inviscid non-magnetized accretion flow and discussed about the
hydrodynamic equations in a compact form both in terms of conservative and
primitive variables. In doing so we presented a discussion regarding construction
of a set of Jacobian matrices which reduces the problem to an eigensystem with
real eignevalues and left and right orthonormal eigenvectors. We then briefly
discuss the numerical techniques involved in solving the system and also a nu-
merical scheme named Total Variation Diminishing scheme (TVD) (Harten, 1983)
and also the Riemann solver. We then introduce viscosity as well as radiative
cooling in the system and modify the source term matrix accordingly. We also
point out the procedure to implement the cooling depending the optical depth of
the flow. We then incorporate the magnetic force terms converting the accretion
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flow into a magnetized one and briefly discuss the equations of motion for the
flux tube and the thermodynamic properties of the flux tubes which are neces-
sary to compute the dynamics of the field lines. In Chapter 3, we discussed the
simulation procedure in detail. We briefly described the simulation box and the
co-ordinate system used. Since to solve the system of partial differential equa-
tions, the boundary conditions are to be provided, we have also discussed about
the boundary conditions invoked in the system to generate two quadrant inviscid
and viscous flow. We have discussed the initial condition needed for the hydro-
dynamics and for the computation of the dynamics of the flux tube as well. We
then test our code for both magnetized and non-magnetized spherical flows and
compare the results.
In Chapter 4, we describe the time dependent two quadrant inviscid flow. Here
we have not invoked any reflection boundary condition unlike Giri et al. (2010)
and thus we have allowed the flow to undergo vertical oscillations along with the
horizontal oscillation. We have injected the matter at the outer boundary main-
taining the vertical equilibrium. We get very interesting results. For low angular
momentum cases we find that the flow remains more or less stable and symmetric
with respect to the equatorial plane. For angular momentum 1.6 we can see that
CENBOL is formed but it is not stable as with time a repetative formation and de-
struction of CENBOL occurs. As we go towards higher angular momentum, the
flow becomes very turbulent and it is observed from the simulation that at some
times a part of the CENBOL is tilted towards the upper quadrant of the flow and
for other times the CENBOL is tilted towards the lower quadrant. This shifting
of CENBOL has an effect on the outflow also. As the CENBOL shifts towards the
upper quadrant, the total outflow from the upper quadrant becomes significantly
higher than the lower quadrant and opposite happens when CENBOL tilts to-
ward the lower quadrant. Thus, when plotted simultenously an anti-correlation
is seen between the outflows in the upper and the lower quadrants. This feature
becomes more and more prominent as we increase the angular momentum.
In chapter 5, we wanted to see if radiative cooling and viscosity is added what
happens to the flow and whether the Keplerian disc is formed or not as in Giri &
Chakrabarti 2013 (GC13). We introduce α viscosity following the same prescrip-
tion as GC13 as appropriate for our set up. We also incorporated two power-law
type coolings depending upon the optical depths of the flow. From the simula-
tion results, we see that for the flow with higher angular momentum, unlike the
inviscid cases, the turbulent Eddies were smeared out and the flow become sta-
ble. Thus we believe that the violent behaviour of the inviscid flow could be an
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artefact of strict shock capturing in TVD code itself. A Keplerian disc is formed
on the equatorial plane of the flow when the angular momentum distribution
obtained from the simulation matches exactly with the theoretical Keplerian dis-
tribution. The temperature inside the disc has the distribution of ∼ r−0.79 which
almost matches with the analytical distribution of ∼ r−3/4.
In Chapter 6, we studied the dynamics of magnetic flux tubes which are released
at the outer edge of a time dependant two quadrant thick advective disc and their
role in collimation and acceleration of the jet and outflow from the upper bound-
ary. In earlier studies, such as CD94 and DC94, simulations were carried out
to study the dynamics of flux tubes in the realm of time independent thick disc
(Paczyński & Wiita 1980). The general conclusion drawn were that depending
upon the initial release points, initial cross-sectional radius of the flux tube, an-
gular momentum distribution of the flow the flux tubes can emerge from different
parts of the disc also at the vortex like opening called "chimney" making it a mag-
netically active region. However, it is also possible to construct physical models
of time independent thick accretion discs with proper entropy conditions that
can provide the storage of weaker flux tubes that instead of being expelled away
tend to oscillate around equipotential surfaces until they are amplified and buoy-
ant and leave the system. In order to have a more realistic picture, in Chapter 6,
we studied the dynamics of the flux tubes released in a time dependent accretion
after removing the reflection symmetry (Deb et al. 2016) condition. We do not use
full Magnetohydrodynamic equations and thus flux tube we used are not sheared
or reconnected. We simply followed the paths of the flux tubes through the flow
and exchange momentum between them which the matter diffusion through the
flux tubes were chosen to be instantaneous. We also answered whether these
magnetic flux tubes aid in the acceleration and collimation of the jets or not. In
order to do this we have injected a single flux tube in each simulation, at the outer
boundary of the disc after a few dynamical timescales so that the initial transient
phase of the flow is over and the flow settles down to a stationary solution. We as-
sumed that flux tube is toroidal which is probably a good assumption in a rapidly
rotating flow. It can be seen from the simulation that depending upon the initial
cross sectional radius of the flux tube and the flow parameters, such as the angu-
lar momentum and energy, flux tubes can move directly towards the chimney or
oscillate till it is expelled away. However, the shock location becomes higher for
higher angular momentum and thus the amplification of the flux tubes are larger
and have chances for ejection of flux tubes earlier on. The same argument stands
for specific energy also. As the shock location moves further out with increase of
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energy (Chakrabarti 1989) the post shock region becomes bigger making the mag-
netic field difficult to be advected in since the drag force considerably increases in
regions of high density such as the post shock region. Increase in magnetic field
cross section would increase in buoyancy force as well. We also find that in case
of certain angular momenta and energies, (i) the outflow rates (Ṁ(r)) from both
upper and lower quadrants increase significantly in comparison to the outflow
rates with respect to the non-magnetic cases (ii) The outflow rate is reaching its
maximum value at much smaller radius, i.e., the spread of the outflow at the up-
per and lower boundaries has reduced significantly. It is to be noted that though
we do not see much fluctuations on a day to day basis in the observed jets, at
the base, the fluctuations are natural since the inner edge could be oscillating and
produce jets with sporadic rates. We note that the pinch felt by the outflow causes
its velocity to increase. At the start of the outbursts, the shock location is higher
making the CENBOL bigger in size (Hard state) and above discussion suggests
that the jets would be weakly collimated at the base. If the magnetic field in the
companion is strong so that the disk intercepts it and amplifies and produces
more flux tubes, we can expect stronger collimation of outflows in such systems.
If the companion star is non-magnetic and the field can only enter sporadically,
the outflow will not be well collimated. In our simulation, we showed that as
long as the flux tube is close to the vertical axis, the outflow is collimated, and it
achieves a high speed. When the flux tubes leave the disc, the outflow returns to
the original un-collimated shape. We repeat our simulation for viscous case also
and we find almost similar result.

7.2 Future Work

Though we studied one tube at a time, our final goal would be to understand
what happens to the flow when an ensemble of flux tubes enters the disc, which
is possibly the case in the realistic scenario. In that case, we will expect a faster
and better collimated steady jet. Thus we have a clear prediction that magnetic
activity of the companion (or, the surroundings in case of super-massive black
holes) is directly correlated with the emanation of stronger and well collimated
jets from the inner regions of the disc.

Of course some flux tubes may still pop-up and produce corona, but the prob-
ability does not seem to be strong, judging by our simulation results. Further-
more, presence of small scale turbulence may tear off fields of larger σ into smaller
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ones which then move in further. These flux tubes may also be responsible for a
large number of astrophysical processes, such as the variability of blazars, mag-
netic winds, production of high energy particles in coronae through Fermi ac-
celeration processes etc. (DC94). In many objects such as, GRS 1915 + 105 the
variability classes namely χ1, χ3 and β are found to be associated with strong ra-
dio jets (Nandi et al. (2001), Naik & Rao (2000), Vadawale et al. (2003), Vadawale
et al. (2001) ). In case of β class it is suspected that magnetic tension in the post-
shock region becomes the most dominant component causing an abrupt collapse
of this region. This may signify that the collapse of the magnetic flux tubes causes
a huge acceleration of jets (Nandi et al. 2001, Naik & Rao 2000, Vadawale et al.
2001, Vadawale et al. 2001). We observed that only the initially filamentary flux
tubes which are produced due to the presence of shear in the disc could be ad-
vected to the innermost regions of the disc. It is not impossible that many of such
filaments merge due to higher density and make stronger flux tubes which then
suddenly collapse and remove the inner region altogether. The opposite would
be true when small scale turbulence is strong. These aspects will be dealt with in
future. In case of the Sun, magnetic flux tubes are known to be anchored between
the radiative core and convective envelope and they come out to the surface due
to Parker instabilities. This is possible since the time scale of instability is much
shorter as compared to the buoyancy time scale. However, in case of thick flows
around black holes, pressure gradients are very strong and the flux tube may es-
cape as a whole, especially those with stronger fields (CD94, DC94, Deb, Giri,
Chakrabarti 2017). By "escaping the disc" we mean that when the flux tubes en-
ter into the funnel (Chimney) or leave the upper computational grid we assume
that they escaped the disc. However due to topological constraints, they are not
destroyed and will collimate the jet. If the jet is not formed, then they can move
sideways and leave the system altogether (Deb, Giri, Chakrabarti 2017).
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